

Time: 3 hrs

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Fourth Semester, B.E. - Semester End Examination; Sep. / Oct. - 2023

Applied Mathematical Methods

(Common to AU, CV, IP and ME)

Max. Marks: 100

Course Outcomes					
The Students will be able to:					
CO1: Apply the concepts of an analytic function and their properties to solve the problems arising in engineering field					
CO2: Use the concept of correlation and regression analysis to fit a suitable mathematical model for the statistical					
samples arise in engineering field					
CO3: Explain various numerical techniques to solve equations approximately having no analytical solutions. CO4: Interpret discrete and continuous probability distributions in analyzing the probability models and solve					
problems involving Markov chains					
CO5: Estimate the series solutions of ordinary difference equation.					
<u>Note</u> : I) PART - A is compulsory. Two marks for each question.					
<i>II</i>) <i>PART - B</i> : Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit. Q. No. Questions Marks BLs COs P					POs
Q. 110.	I : PART - A		DLS	COS	105
		10			
1 a.	Define analytic function.	2	L1	CO1	PO1
b.	Write Karl Pearson's coefficient of correlation formula.	2	L1	CO2	PO1
c.	Write Runge Kutta method of fourth order formula.	2	L1	CO3	PO1
d.	State Binomial distribution.	2	L1	CO4	PO1
e.	Write the Bessel's differential equation.	2	L1	CO4	PO1
	II : PART - B	90			
	UNIT - I	18			
2 a.	Show the $u = e^x (x \cos y - y \sin y)$ is harmonic and find its harmonic	0	10	001	DOA
	conjugate. Also determine the corresponding analytic function.	9	L2	CO1	PO2
b.	Show the $w = z + e^z$ is analytic and hence find $\frac{dw}{dz}$.	9	L2	CO1	PO1
c.	Define conformal transformation. Find the bilinear transformation				
с.		9			
	which map the points $Z = 1$, i , -1 into $w = i$, 0 , $-i$.				
	UNIT - II	18			
3 a.	Expand $f(z) = \frac{1}{(z-1)(2-z)}$ as a Laurent series valid for;	9			
			L2	CO2	PO1
	i) $ Z < 1$ ii) $1 < Z < 2$				
b.	Fit parbola $y = ax^2 + bx + c$ by the method of least squares for the data				
	x 0 1 2 3 4	9	L2	CO2	PO2
	y 1 1.8 1.3 2.5 2.3			-	

U.S.N

P21MA401A Page No... 2 c. Calculate the coefficient of correlation and obtain the lines of regression for the following data: 9 L1 CO2 PO2 1 2 3 4 5 6 7 8 9 x 10 12 13 14 15 v 9 8 11 16 Obtain an estimate for y which corresponds to x = 6.2**UNIT - III** 18 4 a. Write Newton-Raphson's iterative formula for X_{n+1} . Using Regular-Falsi method find the approximate root of the equation 9 CO3 PO2 L2 $xe^x = cosx$ that lies between 0.4 and 0.6 (x is in radians) correct to 4 decimal places. b. Given, $\frac{dy}{dx} = 3x + \frac{y}{2}$, y(0) = 1. Compute y(0.2) by taking h = 0.2 using 9 L2 CO3 PO1 Runge Kutta method of fourth order. Employ Gauss-Seidel iteration method to solve 5x + 2y + z = 12, с. x + 4y + 2z = 15, x + 2y + 5z = 20 carryout 4 iterations taking the initial 9 L1 CO3 PO1 approximation to the solution as (1, 0, 3). **UNIT - IV** 18 5 a. The probability distribution of a finite random variable x is given by the following table: -2 0 1 2 -13 x_i 9 L2 CO4 PO2 K Κ 0.2 2k0.3 $P(x_i)$ 0.1 i) Find the value of K and calculate the mean and variance ii) Find $P(x \le 1)$, $P(-1 \le x \le 2) P(x \ge -1)$ Write the formula of mean and standard deviation in Poison's b. distribution. The probability that a mean aged 60 will live to be 70 is 9 L3 CO4 PO2 0.65. What is the probability that out of 10 men, now aged 60, at least 7 will live to be 70? c. A coin is tossed three times. Let x denote 0 or 1 according as a tail or a head occurs on the first toss. Let y denote the total number of tails which occur. Determine; 9 L2 CO4 PO1 i) The joint distribution of x and y ii) Marginal distribution of x and y iii) E(x+y) and E(xy)UNIT - V 18 6 a. Find the power series solution of $(1-x^2)y'' - 2xy' + 2y = 0$ about x = 0. 9 L2 CO4 PO1

Solve the Bessel's differential equation $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + (x^2 - n^2)y = 0.$ 9 L3 CO4 PO₂ b. 9 CO4 PO2

L3

Express $x^3 + 2x^2 - 4x + 5$ in terms of Legendre's polynomials. c.

* * * *