Course Outcomes

Page No... 1

The Students will be able to:

CO1: Apply the knowledge of thermodynamics to describe the different thermodynamic cycles.

CO2: Apply the basic principles of thermodynamics to describe the working of mechanical systems involving various power producing and power absorbing machines.

CO3: Analyze the performance of air standard cycles and vapor power cycles.

cvcle and deduce an expression for cvcle efficiency.

CO4: Analyze the performance parameters of air compressors, refrigerators and I C engines.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any Two sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.	Questions I : PART - A	Marks 10	BLs	COs	POs
1 a.	Draw P-V diagram of Brayton cycle.	2	L1	CO1	PO1
b.	Compare Carnot cycle with Rankine cycle.	2	L1	CO1	PO1
с.	State the advantages of multistage compression.	2	L1	CO2	PO1
d.	What are the desirable properties of good refrigerants?	2	L1	CO2	PO1
e.	Explain the following terms:		T 4	904	D O1
	i) Rich mixture ii) Lean mixture	2	L1	CO4	PO1
	II : PART - B	90			
2	UNIT - I	18	10	001	DO 1
2 a.	Obtain an expression for air standard efficiency of a diesel cycle.	9	L2	CO1	PO1
b.	In air standard Otto cycle, the compression ratio is 6.5 and the				
	compression begins at 1 bar and 313 K. The heat added is 2520 kJ/kg.	9 L3	L3	CO3	PO2
	Find; i) The maximum temperature and pressure of the cycle	9	LS	COS	PO2
	ii) Work done per kg of air iii) Cycle efficiency				
с.	The air enters the compressor of an open cycle constant pressure gas				
	turbine at a pressure of 1 bar and temperature of 20°C. The pressure of				
	the air after compression is 4 bar. The isentropic efficiencies of				
	compressor and turbine are 80% and 85% respectively. The air fuel ratio	9	L3	CO3	PO2
	used is 90:1. If flow rate of air is 3.0 kg/s. Find;				
	i) Power developed ii) Thermal efficiency of the cycle				
	Assume $C_p = 1.0 \text{ kJ/kgK}$ and $\gamma = 1.4$, CV = 41800 kJ/kg.				
	UNIT - II	18			
3 a.	With a schematic diagram, explain the working of Rcheat vapour power	9	10	CO1	PO2
		9	L2	CUI	PO2

P21ME402		Page No 2		
b. Rankine cycle working between a boiler pressure of 30 bar and				
condenser pressure of 0.5 bar. The mass leaving the boiler and entering	9	L3	CO3	PO2
the turbine have a fraction of 0.85. Determine the following;	7	LJ	005	102
i) Rankine cycle efficiency ii) Turbine work iii) Pump work				
c. The steam power plant working on Rcheat Rankine cycle, having boiler				
pressure 200 bar and 500°C, Pressure in condenser is 0.15 bar.	9	L3	CO3	PO2
Determine the following;	,	15	005	102
i) Intermediate pressure ii) Efficiency iii) Effectiveness				
UNIT - III	18			
4 a. Derive an expression for minimum network required by a two stage air	9	L2	CO2	PO1
compressor with prefeat inter cooling between stages.				
b. A reciprocating compressor of single stage, double acting type delivers				
20 m ³ /min when measured at free air condition of 1 bar, 27°C. The				
compressor has pressure of 7 bar and the condition at the end of the				
suction are 0.97 bar, 35°C. Compressor runs at 240 rpm with clearance	9	L3	CO4	PO2
volume of 5% of swept volume. The L/D ratio is 1.2. Determine the				
volumetric efficiency and dimensions of cylinder and isothermal				
efficiency taking the index of compression and expansion as 1.25. Also show the cycle on P-V diagram.				
c. In a two stage reciprocating air compressor 1.5 kg/min of air is				
compressed from 1 bar to 25 bar and the index of compression is 1.2.				
If the work of compression is minimum and the air is cooled in the				
intercooler so that its temperature of 15°C, determine; i) Heat rejected	9	L3	CO4	PO2
during compression, ii) Heat rejected in the intercooler and iii) The		15	001	102
power required to drive the compressor.				
Take for air $C_p = 1$ kJ/kgK and $C_v = 0.714$ kJ/kgK.				
UNIT - IV	18			
5 a. Explain how super heating and sub cooling of refrigerant affects the COP	9	L2	CO2	PO1
of vapour compression refrigeration system.	9	L2	02	101
b. A simple vapour compression plant produces 5 tonnes of refrigeration.				
The enthalpies of the working fluid at inlet to the compressor, at exit of				
compressor and at exit from the condenser are 183.19 kJ/kg,				
209.41 kJ/kg and 74.59 kJ/kg respectively. Estimate;	9	L3	CO4	PO2
i) The refrigerant flow rate				
ii) COP of the plant				
iii) Power required to drive the compressor				
iv) The rate of heat rejection in the condenser Contd3				

P21ME402			Page No 3		
c.	Atmospheric air at 101.325 KPa has 30°C DBT and 15°C DPT. Without				
	using the psychometric chart, using the property values from the tables				
	Calculate;				
	i) Partial pressure of air and water vapour	9	L3	CO4	PO2
	ii) Specific humidity	7	LJ	0.04	102
	iii) Relative humidity				
	iv) Vapour density				
	v) Enthalpy of moist air				
	UNIT - V	18			
6 a.	Explain the following:				
	i) Morse Test Method	9	L2	CO1	PO1
	ii) Willan's Line method				
b.	A six cylinder gasoline engine operates on four stroke cycle. The bore of				
	each cylinder is 80 mm and stroke 100 mm. The clearance volume per				
	cylinder is 70 cc. At a speed of 4000 rpm the fuel consumption is				
	20 kg/hr and the torque developed is 150 Nm, calculate;	9	L3	CO4	PO2
	i) Brake power	-	10	001	102
	ii) Brake mean effective pressure				
	iii) Break thermal efficiency $CV = 43000 \text{ kJ/kg}$				
	iv) Relative efficiency. Take $\gamma = 1.4$ for air				
c.	A two stroke diesel engine was motored when meter reading was				
	1.5 kW. Test on engine was carried for one hour and data observed were				
	as follows:				
	Brake torque = 120 N-m, $C_p(gas) = 1.05 \text{ kJ/kgK}$, Speed = 600 rpm,				
	Room temperature = 27° C, fuel used 2.5 kg, A:F ratio = 32:1,	9	L3	CO4	PO2
	CV = 40.3 MJ/kg, Cooling water = 818 kg, Rise in temperature of				
	cooling water = 10°C, Exhaust gas temperature = 347°C. Determine;				
	i) BP				
	ii) IP				
	iii) BTE and draw the heat balance sheet on minute basis				

* * * *