Page No... 1

The Students will be able to:

CO1: Apply the concepts of normal stresses, strain, shear stress, bending stress torsional stress and buckling stress in mechanical components.

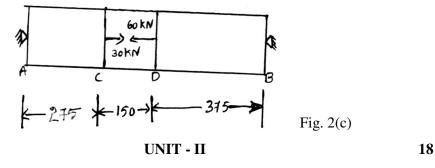
Course Outcomes

CO2: Apply the fundamentals of thermal stress and compound stresses in bars of uniform and compound section. *CO3:* Analyse the uniform, stepped, compound bars, beams for different cross section and columns.

CO4: Analyse the beams for deflection using Macaulay's method.

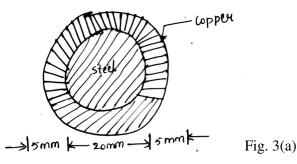
Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

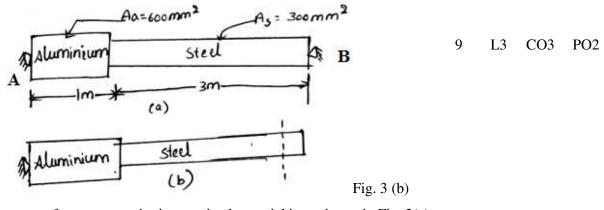

Q. No.	Questions	Marks	BLs	COs	POs
	I : PART - A	10			
1 a.	Define stress and mention unit of stress.	2	L1	CO1	PO1
b.	Define compounds bar.	2	L1	CO2	PO1
c.	Define point of contra flexure.	2	L1	CO2	PO1
d.	Mention any two assumptions in simple bending.	2	L1	CO1	PO1
e.	Define torsion and write down torsion equation.	2	L1	CO1	PO1
	II : PART - B	90			
	UNIT - I	18			
2 a.	A bar of uniform thickness 't' tapers uniformly from a width of b_1 at one				
	end to b_2 at other end in a length 'L'. Find the expression for the change	9	L2	CO1	PO1
	in length of the bar when subjected to an axial force <i>P</i> .				
b.	A specimen of steel 25 mm diameter with a gauge length of 200 mm is				
	tested to destruction. It has an extension of 0.16 mm under a load of				
	80 kN and the load at elastic limit is 160 kN. The maximum load is				
	180 kN. The total extension at fracture is 56 mm and diameter at neck is	9	L3	CO1	PO1
	18 mm. Find;				
	i) The stress at elastic limit ii) Young's Modulus				
	iii) Percentage elongation iv) Percentage reduction in area				
с.	A bar of 800 mm length is attached rigidly at A and B as shown in				
	Fig. 2(c). Forces of 30 kN and 60 kN act as shown on the bar.	0	1.0	001	DO2
	If $E = 200$ MPa, determine the reactions at the two ends. If the bar	9	L3	CO3	PO2
	diameter is 25 mm, find the stresses.				
	Contd2				

9

L3

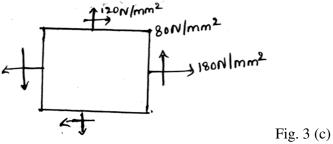

CO3

PO₂



3 a. A compound bar consists of a circular rod of Steel of diameter 20 mm rigidly fitted into a Copper tube of internal diameter 20 mm and thickness 5 mm as shown in Fig. 3 (a). If the bar is subjected to a load of 100 kN, find the stresses developed in the two materials.

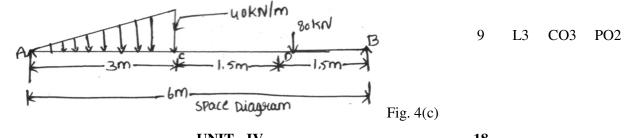
Take $E_s = 2 \times 10^5 \text{ N/mm}^2$ and $E_c = 1.2 \times 10^5 \text{ N/mm}^2$.


b. A composite bar is rigidly fitted at the supports *A* and *B* as shown in Fig. 3(b). Determine the reactions at the supports when temperature rises by 20° C. Take $E_a = 70 \text{ GN/m}^2$, $E_s = 200 \text{ GN/m}^2$, $\alpha_a = 11 \times 10^{-6} / ^{\circ}$ C and $\alpha_s = 12 \times 10^{-6} / ^{\circ}$ C.

- c. The state of stress at a point in a strained material is as shown in Fig. 3(c) determine;
 - i) The direction of the principal planes
 - ii) The magnitude of principal stresses
 - iii) The magnitude of the maximum shear stress and its direction.

Use analytical method

9 L3 CO3 PO3



UNIT - III 18 9 4 a. With neat sketch, explain types of beams, supports, and loads. L2 CO1 PO1 b. Draw the shear force and bending moment diagrams for the cantilever

beam shown in Fig. 4(b).

$$D = 2m + 1m + 20 \text{ KM} + 10 \text{ KN} = 9 \text{ L3 CO3 PO2}$$

Fig. 4(b)

c. A simply supported beam AB of 6 m span is loaded as shown in Fig. 4(c). Draw the shear force and bending moment diagrams.

	UNIT - IV	18			
5 a.	Derive the relationship between moment and radius of curvature.	9	L2	CO4	PO2
b.	A circular pipe of external diameter 70 mm and thickness 8 mm is used				
	as a simply supported beam over an effective span 2.5 m. Find the	9	L2	CO4	PO2
	maximum concentrated load that can be applied at the center of the span				
	if permissible stress in tube is 150 N/mm ² .				
c.	Derive differential equation for defection with assumptions.	9	L2	CO4	PO2
	UNIT - V	18			
6 a.	Derive the torsional equation and write the assumptions in the theory	9	L2	CO1	PO1
	of pure torsion.	,		001	101
b.	Determine the diameter of solid shaft which will transmit 440 kW at				
	280 r.p.m. The angle of twist must not exceed one degree per meter	9	L3	CO1,3	PO1,2
	length and the maximum torsional shear stress is to be limited to				
	40 N/mm ² . Assume $G = 84$ kN/mm ² .				
c.	Derive the Euler's equation for critical load in a column with both	9	L2	CO1,3	PO1,2
	ends fixed.	フ			