

## P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Second Semester, B.E. - Semester End Examination; Sep. / Oct. - 2023

## **Engineering Physics** (Common to all Branches)

**Course Outcomes** 

*Time: 3 hrs* 

Max. Marks: 100

The Students will be able to:

be able to:

- CO1: Recall the fundamental Definitions or Laws of physics relevant to Engineering field
- CO2: Mention the various Properties and Applications by understanding the course topics pertaining to Engineering field.
- CO3: Explain various Concepts and Principles used in the topics to understand the theory related to Engineering field.
- CO4: Derive the expressions for the Physical Quantities on the topics of the course by applying the theory relevant to Engineering field.
- CO5: Solve the numerical problems by applying proper solutions to verify the theoretical concepts related to Engineering field.

<u>Note:</u> I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

**Physical constants:** Electron mass,  $m = 9.11 \times 10^{-31}$  kg, Electron charge,  $e = 1.602 \times 10^{-19}$  C; Velocity of light,  $c = 3 \times 10^8$  ms<sup>-1</sup>; Planck's constant,  $h = 6.626 \times 10^{-34}$  Js; Boltzmann constant,  $K = 1.38 \times 10^{-23}$  JK<sup>-1</sup>; Avogadro number,  $N = 6.025 \times 10^{23}$ /mole; Permittivity of free space,  $\varepsilon_o = 8.85 \times 10^{-12}$  Fm<sup>-1</sup>.

| Q. No. | Questions<br>I : PART - A                                                                                                                                                                                                                                                                                                                                                                         | Marks<br>10    | BLs | COs   | POs |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|-------|-----|
| 1 a.   | Define Phase velocity and Group velocity.                                                                                                                                                                                                                                                                                                                                                         | 2              | L1  | CO1   | PO1 |
| b.     | What is Young's modulus? Write the relation between $q$ , $n$ , $k$ and $\sigma$ .                                                                                                                                                                                                                                                                                                                | 2              | L1  | CO1   | PO1 |
| c.     | List any two Merits of quantum free-electron theory.                                                                                                                                                                                                                                                                                                                                              | 2              | L1  | CO1   | PO1 |
| d.     | Define fractional index change and mention the expression for it.                                                                                                                                                                                                                                                                                                                                 | 2              | L1  | CO1   | PO1 |
| e.     | Mention Sabine's formula for time of reverberation.                                                                                                                                                                                                                                                                                                                                               | 2              | L1  | CO1   | PO1 |
|        | II : PART - B                                                                                                                                                                                                                                                                                                                                                                                     | 90             |     |       |     |
| 2 a.   | <b>UNIT - I</b><br>What are matter waves? Arrive at the expression for de-Broglie                                                                                                                                                                                                                                                                                                                 | 18             |     |       |     |
| 2 a.   | wavelength using the concept of group velocity.                                                                                                                                                                                                                                                                                                                                                   | 9              | L1  | CO1,3 | PO1 |
| b.     | Write the condition for normalized wave function. Derive the expression<br>for one dimensional time independent Schrodinger's wave equation.                                                                                                                                                                                                                                                      | 9              | L1  | CO1,3 | PO1 |
| с.     | <ul> <li>i) Natural uncertainty in the measurement of speed of an electron in an atom is estimated to be 2.2 x 10<sup>4</sup> m/s. Estimate the minimum width about which the electron stays confined in the atom.</li> <li>ii) For an electron in one-dimensional potential well of width 1 x 10<sup>-9</sup> m. Find its wavelength and energy at ground state and first two excited</li> </ul> | 4<br>5         | L2  | CO4   | PO2 |
| 3 a.   | states.<br>UNIT - II<br>What is a beam? Derive the expression for bending moment of<br>rectangular beam.<br>Contd2                                                                                                                                                                                                                                                                                | <b>18</b><br>9 | L1  | CO1,3 | PO1 |

| P21PH202 |                                                                                                                                                                                                    |    | Pa  | ıge No      | 2           |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|-------------|-------------|
| b.       | State Internal field and arrive at the expression for internal field in solid dielectric materials.                                                                                                | 9  | L1  | CO1,3       | PO1         |
| c.       | <ul> <li>i) Define Cooper pairs and briefly discuss BCS theory of Super conductors.</li> </ul>                                                                                                     | 5  | L1  | CO1,2       | PO1         |
|          | ii) A wire of 3 m long and $0.625 \times 10^{-4}$ m <sup>2</sup> in cross section is found to stretch 0.002 m under a tension of 1100 kg, what is the Young's modulus of the material of the wire. | 4  | L2  | CO4         | PO2         |
|          | UNIT - III                                                                                                                                                                                         | 18 |     |             |             |
| 4 a.     | Define density of states and derive the expression for density of states in metals.                                                                                                                | 9  | L1  | CO1,3       | PO1         |
| b.       | What are intrinsic and extrinsic semiconductors? Obtain the relation for<br>conductivity and resistivity of an intrinsic semiconductor in terms of<br>mobility of charge carriers.                 | 9  | L1  | CO1,3       | PO1         |
| c.       | i) Show that $E_g = \frac{E_F}{2}$ , for an intrinsic semiconductor.                                                                                                                               | 5  | L1  | CO3         | PO1         |
|          | ii) Calculate the density of states for copper at Fermi level for $T = 0$ K.<br>Given that, electron density of copper is $8.5 \times 10^{28}$ electrons/m <sup>3</sup> .                          | 4  | L2  | CO4         | PO2         |
|          | UNIT - IV                                                                                                                                                                                          | 18 |     |             |             |
| 5 a.     | Derive an expression for energy density of radiation at thermal                                                                                                                                    |    | T 1 | CON         |             |
|          | equilibrium in terms of Einstein's coefficients.                                                                                                                                                   | 9  | L1  | CO3         | PO1         |
| b.       | State total internal reflection. Arrive at the expression for angle of acceptance and numerical aperture in an optical fiber.                                                                      | 9  | L1  | CO1,3       | PO1         |
| c.       | <ul><li>i) Calculate the population ratio of two energy levels, if the wavelength<br/>of light emitted is 640 nm at 330 K.</li></ul>                                                               | 4  |     |             |             |
|          | <ul><li>ii) The angle of acceptance of an optical fiber is 30° when placed in air.</li><li>Find the angle of acceptance when it is immersed in water of R.I, 1.33.</li></ul>                       | 5  | L2  | CO4         | PO2         |
|          | UNIT - V                                                                                                                                                                                           | 18 |     |             |             |
| 6 a.     | Define time of reverberation. Briefly explain the requisites and remedies                                                                                                                          | 9  | L1  | CO1,2       | PO1         |
|          | for acoustically good auditorium.                                                                                                                                                                  | ,  | 21  | 001,2       | 101         |
| b.       | Explain with the neat diagram, the construction and working of Reddy's                                                                                                                             | 9  | L1  | CO2         | PO1         |
|          | Shock tube. List any three applications of Shock waves.                                                                                                                                            |    |     |             |             |
| c.       | i) A hall of volume 5500 $m^3$ is found to have a reverberation time of                                                                                                                            |    |     |             |             |
|          | 2.4 seconds. The sound absorbing surface of the hall has an area of $2 + 2 = 2$                                                                                                                    | 4  |     |             |             |
|          | 760 m <sup>2</sup> . Calculate the average absorption coefficient.                                                                                                                                 |    |     | <b>GO</b> ( | <b>D</b> 00 |
|          | ii) Find the depth of a submarine, if an ultrasonic pulse reflected                                                                                                                                | ~  | L2  | CO4         | PO2         |
|          | from the submarine is received after a delay of 0.38 seconds after                                                                                                                                 | 5  |     |             |             |
|          | sending out the signal. Given the velocity of ultrasonic sound in sea                                                                                                                              |    |     |             |             |
|          | water is 1440 m/s.                                                                                                                                                                                 |    |     |             |             |