| U.S.N |  |  |  |  |  |
|-------|--|--|--|--|--|



## P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

## Second Semester, B.E. - Semester End Examination; Sep. / Oct. - 2023 Elements of Electrical Engineering

(Electrical and Electronics Engineering Stream)

Time: 3 hrs Max. Marks: 100

## Course Outcomes

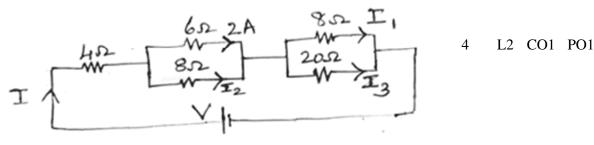
The Students will be able to:

CO1: Apply the knowledge of mathematics & electrical laws to solve problems related to electrical circuits.

CO2: Analyze single phase and three phase AC systems to obtain desired expressions.

CO3: Describe the construction and working of DC-AC Machines & transformer.

CO4: Explain the concepts of electricity billing, circuit protective devices and personal safety measures.


**Note:** I) PART - A is compulsory. Two marks for each question.

*II) PART - B:* Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

| Q. No. | Questions                                                                                                                   | Marks | BLs | COs | POs |
|--------|-----------------------------------------------------------------------------------------------------------------------------|-------|-----|-----|-----|
|        | I : PART - A                                                                                                                | 10    |     |     |     |
| 1 a.   | State Ohm's law.                                                                                                            | 2     | L1  | CO1 | PO1 |
| b.     | Define RMS value and form factor of an alternating quantity.                                                                | 2     | L1  | CO2 | PO2 |
| c.     | Three, 100 $\Omega$ resistors are connected in star connection across 415 V, 50 Hz, 3 phase supply, calculate line current. | 2     | L1  | CO1 | PO2 |
| d.     | Mention any two applications of D.C Motors.                                                                                 | 2     | L1  | CO1 | PO1 |
| e.     | Define fusing factor.                                                                                                       | 2     | L1  | CO1 | PO1 |
|        | II : PART - B                                                                                                               | 90    |     |     |     |
|        | UNIT - I                                                                                                                    | 18    |     |     |     |
| _      |                                                                                                                             |       |     |     |     |

- 2 a. i) State and explain Kirchhoff's current law and Kirchhoff's voltage laws.
  - laws.

    The current in 6  $\Omega$  resistance shown in below figure is 2 A. Find
  - ii) The current in 6  $\Omega$  resistance shown in below figure is 2 A. Find currents in all the other branches and supply voltage.

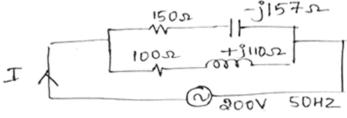


b. Define self-inductance and mutual inductance. Define co-efficient of coupling and establish the relation between self-inductances, mutual 9 L1 CO1 PO1 inductances with coefficient of coupling.

5

L1 CO1 PO1

| P22EEE203  | Page No.   |
|------------|------------|
| 1 22EEE203 | i age ivo. |


- c. i) Derive an expression for energy stored in Inductance of 'L' henry.
- 5 L2 CO1 PO1

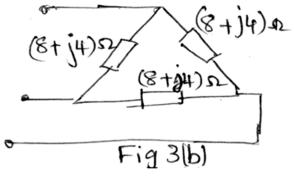
. 2

- ii) Two incandescent lamps rated 40 W and 80 W, each designed to work on 200 V are connected in parallel. Find current drawn from the source. If the lamps are connected in series across same supply, what is the current drawn?
- 4 L2 CO1 PO1

UNIT - II 18

- 3 a. i) Define power factor. Mention two disadvantages of low power factor.
- 9 L1 CO2 PO2
- ii) Define RMS Value of an AC current and derive its expression.
- 9 L2 CO2 PO2
- b. With the help of suitable equations, show that power consumed by an RC circuit is  $P = VI \cos \phi$ . Also draw current, voltage and power curves.
- 9 L2 CO2 PO2
- Find the total current, branch currents and the total power consumed in the circuit shown in Fig. 2C




9 L3 CO2 PO2

\_\_\_\_

UNIT - III 18

Fig. 2C

- 4 a. Explain the wattmeter method of measurement of three phase power.
- 9 L2 CO1 PO1
- b. i) Obtain the relation between line and phase values of voltage and current in a balanced delta connected load.
- 6 L3 CO2 PO1
- ii) A balanced delta connected load is shown in Fig. 3(b), supply voltage is 415 V at 50 Hz. Calculate line and phase currents.



3 L2 CO2 PO1

- c. i) Mention any three merits of three phase system over single phase system.
- 3 L3 CO2 PO1
- ii) Three coils each having a resistance of  $10 \Omega$  and an inductance of 0.02 H are connected in star across 440 V, 50 Hz, 3 phase supply, calculate the line current and total power consumed.
- 6 L2 CO2 PO2

| P22EEE203 |                                                                                                                                                                                                                                                 |        | Page No 3                |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------|--|--|
|           | UNIT - IV                                                                                                                                                                                                                                       | 18     |                          |  |  |
| 5 a.      | Explain the two types of rotor in a synchronous generator, with neat sketches.                                                                                                                                                                  | 9      | L2 CO3 PO2               |  |  |
| b.        | With a neat sketch, explain the construction of DC motor.                                                                                                                                                                                       | 9      | L5 CO3 PO2               |  |  |
| c.        | i) Derive an expression for torque developed in a DC motor.                                                                                                                                                                                     | 5      | L2 CO3 PO2               |  |  |
|           | ii) A 4 pole, 1500 rpm D.C. generator has a lap wound armature, having 32 slots and 8 conductors per slot. If the flux per pole is 0.04 Wb, calculate the emf induced in armature, what would be the emf induced, if winding is wave connected? | 4      | L2 CO1 PO1               |  |  |
|           | UNIT - V                                                                                                                                                                                                                                        | 18     |                          |  |  |
| 6 a.      | <ul><li>i) With a neat diagram, explain the working of Earth Leakage Circuit<br/>Breaker [ELCB]?</li><li>ii) Mention four differences between fuses and circuit breakers.</li></ul>                                                             | 5<br>4 | L1 CO4 PO2<br>L2 CO4 PO2 |  |  |
| b.        | <ul><li>i) What is electric shock? Mention precautions to be taken to prevent electric shock.</li><li>ii) What is earthing? Explain the plate earthing with a sketch.</li></ul>                                                                 | 4 5    | L3 CO4 PO1<br>L3 CO4 PO2 |  |  |
| c.        | <ul><li>I) Explain two parts electricity tariff.</li><li>II) Calculate the electricity bill amount for a month of 31 days, if the following devices are used as product.[Given: Rate of electricity per</li></ul>                               | 5      | L1 CO4 PO2               |  |  |
|           | <ul> <li>i) 3 bulbs of 30 watts for 5 hours</li> <li>ii) 4 tube lights of 50 watts for 8 hours</li> <li>iii) 1 fridge of 300 watts for 24 hours</li> </ul>                                                                                      | 4      | L2 CO4 PO2               |  |  |

\* \* \* \*