

P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi)

Second Semester, B.E. - Semester End Examination; Sep. / Oct. - 2023

Introduction to Electrical Engineering

(Common to AI & ML CV and IS)

	(Common to AI & ML, CV, and IS)				
Time:	3 hrs	M	ax. M	arks:	100
CO1: A CO2: A CO3: D CO4: B	Course Outcomes dents will be able to: pply the knowledge of mathematics & electrical laws to solve problems related to nalyze single phase and three phase AC systems to obtain desired expressions. Describe the construction and working of different Electrical Machines and transfo Explain the concepts of electric power transmission and distribution, electricity levices and personal safety measures and green energy sources.	rmers.			ctive
	I) PART - A is compulsory. Two marks for each question.) PART - B : Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 m	arks from	n each	unit.	
Q. No.	Questions	Marks	BLs	COs	POs
	I : PART - A	10			
1 a.	Differentiate between Conventional and Non-convention sources of energy with example.	2	L1	CO4	PO2
b.	Define period and frequency of a sinusoidal function.	2	L1	CO2	PO1
c.	List out the different types of generators.	2	L1	CO3	PO2
d.	Define RMF with respect to IM.	2	L1	CO3	PO1
e.	Define two part tariff.	2	L2	CO4	PO1
	II : PART - B	90			
	UNIT - I	18			
2 a.	With block diagram, explain the concept of power generation from nuclear power plant.	9	L2	CO1	PO1
b.	Draw and explain the single line diagram of a typical transmission and distribution scheme with their voltage levels.	9	L3	CO4	PO2
c.	i) Define KVL and KCL.	4	L1	CO1	PO2
	ii) Determine the voltage across and current through each resistor in the circuit given. $A \qquad \qquad$	5	L2	CO1	PO2

802

P22ESC2042		Page No 2	
UNIT - II	18		
3 a. i) Define form factor and peak factor.	3	L2 CO2	PO2
ii) Prove that in a purely inductive circuit the current l	lags the voltage 6	L2 CO2	
by 90°.	Ū.	12 002	102
b. i) Derive an expression for power in a series RC circuit.	6	L2 CO2	PO2
ii) A circuit consists of R in series with X_c of 60 Ω . Dete		L2 CO1	
of R for which the power factor of the circus is 0.8.	-		-
c. I) Define power factor. Write its significance and also me	ention when the 4	L2 CO2	PO2
power factor is leading and lagging?		12 002	102
II) An iron choke takes 4 A current when connected to 2	20 V DC supply		
when connected to a 65 V, 50 Hz AC supply, it tak	tes 5 A current.		
Determine; i) The resistance and inductance of a coil	5	L2 CO1	PO1
ii) The power factor			
iii) The power drawn by the coil			
UNIT - III	18		
4 a. i) Derive from first principles an expression for the em	of equation of a 6	L2 CO3	PO2
DC generator.			
ii) A Lap wound DC generator has a useful flux of	-		
Calculate the generated emf when it is rotated at a sp	- 3	L2 CO1	PO1
with the help of a prime mover. Armature consists of	440 number of		
conductors.			
b. i) With a neat sketch, explain the working principle of a I		L3 CO3	
ii) What is back emf? Explain its significance in DC moto		L2 CO3	PO2
c. i) Derive the expression for electromagnetic torque deve	eloped in a DC 6	L2 CO3	PO2
motor.			
ii) A 250 V DC shunt motor takes a line current of 20		11 001	DOI
shunt field winding is 200 Ω and resistance of armatur	The is 0.3Ω . Find 3	L1 CO1	POI
the armature current and the back emf.			
UNIT - IV	18		
5 a. i) Explain the constructional difference between a core t	type and a shell 4	L2 CO4	PO2
type transformer.			
ii) A single phase transformer working at 0.8 PF and has	-	10 20 3	DCA
94% at both three-fourth full load and full load of 600	kW. Determine 5	L2 CO4	PO2
efficiency at half full load, using power factor.			

P22ESC2042		Page No 3		
b. Explain the concept of rotating magnetic field in three phase IM.	9	L2 CO4 PO2		
c. i) What is slip in an induction motor? Explain why slip is never zero in an induction motor.	5	L2 CO4 PO2		
ii) A 3¢ IM is wound for 4 pole and supplied from 50 Hz supply.				
Calculate;				
i) Synchronous speed	4	L2 CO1 PO1		
ii) Rotor speed when slip is 4%				
iii) Rotor frequency when speed is 600 rpm				
UNIT - V	18			
6 a. Discuss how electricity bill is calculated based on unit consumption of electrical energy using two part tariff for domestic customers.	9	L3 CO4 PO2		
b. Why earthing is essential in a building service? With a neat diagram, explain the pipe earthing.	9	L3 CO4 PO2		
c. i) Explain three way control of lamp.	4	L2 CO4 PO2		
ii) Explain the operation of MCB and Fuse with their difference.	5	L2 CO4 PO2		

* * * *