i) **F** ·∇(φ),

ii) **F** ×∇(φ)

			-	uge n					
		U.S.N							
		P.E.S. College of Engineering, Mandya - 571	401						
	4	(An Autonomous Institution affiliated to VTU, Belagavi)							
		Second Semester, B.E Semester End Examination; Sep. / Oc	t 20)23					
		Integral Calculus, Partial Differential Equations and Numerical	Met	hods					
7	Cim o	(Common to CS, IS, and AI&ML) : 3 hrs	Max	Marks	. 100				
	ime		Max.	Marks	s: 100	•			
7	The S	tudents will be able to:							
		D1: Knowledge to Evaluate double and triple integration and identify the scalar, vector notation of functions of							
(-02.	two and three dimensions , recognize the partial differential equations and Numerical dig Understand to explain Area, Volume by double integration, change to polar coordinates			raence				
C	.02.	and flux in vector field; classify method of solutions of PDE's, Numerical differentiation	0						
C	<i>CO3:</i>	Apply the Mathematical properties to evaluate triple integral and improper integral			ret the				
C	:04	irrotational and solenoidal vector field, find the solutions to problem arises in engineering field Analyze multiple integrals ,vector differentiations and integration, the Mathematical model by partial							
-		differential equations, Numerical solution to algebraic and transcendental, ordinary of							
_	•	and familiarize with modern mathematical tools namely SCILAB/PYTHON/MATLAB				-			
Δ		I) PART - A is compulsory. Two marks for each question. II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks.	from	ach unit					
Q. I		Questions		s BLs		POs			
~ ••	10.	I : PART - A	10		COS	105			
1	la.	Write the integral expression for volume of a solid obtained by the revolution		. .	001	D01			
		of a curve enclosing an area A about the initial line in the polar form.	2	L1	CO1	POI			
	b.	Define Solenoidal and Irrotational vector.	2	L1	CO2	PO1			
	c.	Write the order and degree of the partial differential equation:							
		$\frac{\partial^3 z}{\partial z} = \sin(3x \pm 2x)$	2	L1	CO3	PO1			
		$\frac{\partial^3 z}{\partial^2 x \partial y} = \sin(3x + 2y)$							
	d.	Write the Weddle's formula to evaluate $\overset{b}{\mathbf{O}} f(x)dx$ for $n = 6$.	2	L1	CO4	PO1			
			2	21	001	101			
	e.	Write Modified Euler's formula.	2	L1	CO4	PO1			
		II : PART - B	90						
		UNIT - I	18						
2	2 a.	Evaluate $\iint_R xy dx dy$ where R is the region bounded by the x-axis, ordinate	9	L1	CO1	PO1			
		$x = 2a$ and the curve $x^2 = 4ay$.)	LI	COI	101			
	h	$\frac{1}{x}$							
	b.	Evaluate $\bigotimes_{0}^{\infty} \frac{x}{\sqrt{x^2 + y^2}} dy dx$ by changing the order of integration.	9	L2	CO1	PO1			
	c.	i) Define Beta and Gamma function.							
		ii) Show that $\hat{O}_{0}^{\frac{p}{2}} \sin^{p} q dq \hat{O}_{0}^{\frac{p}{2}} \sin^{p+1} q dq = \frac{p}{2(p+1)}$	9	L3	CO1	PO2			
		$\int_{0}^{10} \sin q dq = 0$							
		UNIT - II							
	3 a.	If $\varphi = x^2 y^2 z^3$ and $\vec{F} = 2x \hat{i} + 3y f + 4z k$ find the following:							

iii) **∇(|F|)** Contd....2

9 L2 CO2 PO1

 b. Show that F = (2xy² + yz)î + (2x²y + xz + 2yz²)ĵ + (2y²z + xy)k is a conservative force field. Find its scalar potential. c. Verify Green's theorem for ∫_c (xy + y²)dx + x² dy where c is the closed curve of the region bounded by y = x and y = x². UNIT - III 4 a. i) Form the partial differential equation, by eliminating the arbitrary constants: ^{x²}/_{a²} + ^{x²}/_{b²} = 1, where a and b are arbitrary constants. ii) Find the partial differential equation arising from the equation: φ(x + y + z, xy + z²) = 0, where φ is an arbitrary function. b. Solve the partial differential equation: ^{d²}/_{dx} = 0, ^{d²/_{dx} = 4, when x = 0. c. Find the various possible solutions of the one dimensional wave equation ^{d²/_u} = c²/_{d²/u} by the method of capacitring of variables.} 	P22MACS201			Page No 2		
 conservative force field. Find its scalar potential. c. Verify Green's theorem for ∫_c (xy + y²)dx + x² dy where c is the closed 9 L2 CO2 PO2 curve of the region bounded by y = x and y = x². UNIT - III 18 4 a. i) Form the partial differential equation, by eliminating the arbitrary constants: x²/a² + y²/b² = 1, where a and b are arbitrary constants. 9 L2 CO3 PO2 ii) Find the partial differential equation arising from the equation: φ(x + y + z, xy + z²) = 0, where φ is an arbitrary function. b. Solve the partial differential equation: d³z/dx² + 4 dz/dx = 0, given that z = 0, 9 L3 CO3 PO2 dx/dx = 0, d³z/dx = 0, d³z/dx = 4, when x = 0. c. Find the various possible solutions of the one dimensional wave equation 	b.	Show that $\vec{F} - (2xy^2 + yz)\hat{\imath} + (2x^2y + xz + 2yz^2)\hat{\jmath} + (2y^2z + xy)\hat{k}$ is a	0			
curve of the region bounded by $y = x$ and $y = x^2$. UNIT - III 18 4 a. i) Form the partial differential equation, by eliminating the arbitrary constants: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where <i>a</i> and <i>b</i> are arbitrary constants. ii) Find the partial differential equation arising from the equation: $\varphi(x + y + z, xy + z^2) = 0$, where φ is an arbitrary function. b. Solve the partial differential equation: $\frac{\partial^3 z}{\partial x^3} + 4 \frac{\partial z}{\partial x} = 0$, given that $z = 0$, $\frac{\partial z}{\partial x} = 0$, $\frac{\partial^3 z}{\partial x^2} = 4$, when $x = 0$. c. Find the various possible solutions of the one dimensional wave equation		conservative force field. Find its scalar potential.	7	L2 CO2 FOI		
UNIT - III184 a. i) Form the partial differential equation, by eliminating the arbitrary constants: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where a and b are arbitrary constants.9L2CO3PO2ii) Find the partial differential equation arising from the equation:9L2CO3PO2iii) Find the partial differential equation arising from the equation:9L2CO3PO2 $\varphi(x + y + z, xy + z^2) = 0$, where φ is an arbitrary function.9L3CO3PO2b. Solve the partial differential equation: $\frac{\partial^3 z}{\partial x^2} + 4 \frac{\partial z}{\partial x} = 0$, given that $z = 0$,9L3CO3PO2 $\frac{\partial z}{\partial x} = 0$, $\frac{\partial^2 z}{\partial x^2} = 4$, when $x = 0$.0L3CO3PO2c. Find the various possible solutions of the one dimensional wave equation0L3CO3PO2	c.	Verify Green's theorem for $\int_c (xy + y^2) dx + x^2 dy$ where c is the closed	9	L2 CO2 PO2		
 4 a. i) Form the partial differential equation, by eliminating the arbitrary constants: x²/a² + y²/b² = 1, where a and b are arbitrary constants. ii) Find the partial differential equation arising from the equation: φ(x + y + z, xy + z²) = 0, where φ is an arbitrary function. b. Solve the partial differential equation: (θ³z/∂x² + 4) (θz/∂x) = 0, given that z = 0, given the various possible solutions of the one dimensional wave equation c. Find the various possible solutions of the one dimensional wave equation 		curve of the region bounded by $y = x$ and $y = x^2$.				
 ^{x²}/_{a²} + ^{y²}/_{b²} = 1, where a and b are arbitrary constants. ii) Find the partial differential equation arising from the equation: \$\vee (x + y + z, xy + z²) = 0\$, where φ is an arbitrary function. b. Solve the partial differential equation: \$\vee \frac{\partial x}{\partial x} + 4 \frac{\partial z}{\partial x} = 0\$, given that \$z = 0\$, \$z = 0\$, \$\vee \frac{\partial x}{\partial x} = 4\$, when \$x = 0\$. c. Find the various possible solutions of the one dimensional wave equation 	4 a.		18			
 ii) Find the partial differential equation arising from the equation: φ(x + y + z, xy + z²) = 0, where φ is an arbitrary function. b. Solve the partial differential equation: ^{δ³z}/_{∂x³} + 4 ^{δz}/_{∂x} = 0, given that z = 0, ^{δz}/_{∂x} = 0, ^{δ¹z}/_{∂x²} = 4, when x = 0. c. Find the various possible solutions of the one dimensional wave equation 						
 φ(x + y + z, xy + z²) = 0, where φ is an arbitrary function. b. Solve the partial differential equation: ^{δ³z}/_{∂x³} + 4 ^{δz}/_{∂x} = 0, given that z = 0, ^{δz}/_{∂x} = 0, ^{δ¹z}/_{∂x²} = 4, when x = 0. c. Find the various possible solutions of the one dimensional wave equation 			9	L2 CO3 PO2		
 b. Solve the partial differential equation: ^{∂³z}/_{∂x³} + 4 ^{∂z}/_{∂x} = 0, given that z = 0, 9 L3 CO3 PO2 ^{∂z}/_{∂x} = 0, ^{∂¹z}/_{∂x²} = 4, when x = 0. c. Find the various possible solutions of the one dimensional wave equation 						
$\frac{\partial z}{\partial x} = 0, \frac{\partial^2 z}{\partial x^2} = 4$, when $x = 0$. c. Find the various possible solutions of the one dimensional wave equation						
c. Find the various possible solutions of the one dimensional wave equation	b.	Solve the partial differential equation: $\frac{\partial^2 z}{\partial x^3} + 4 \frac{\partial z}{\partial x} = 0$, given that $z = 0$,	9	L3 CO3 PO2		
		$\frac{\partial z}{\partial x} = 0$, $\frac{\partial^2 z}{\partial x^2} = 4$, when $x = 0$.				
$\frac{\partial^2 u}{\partial t} = \sigma^2 \frac{\partial^2 u}{\partial t}$ by the method of separation of variables	c.	Find the various possible solutions of the one dimensional wave equation	0			
$a_{a}^{2} - c_{a}^{2}$ by the method of separation of variables.		$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ by the method of separation of variables.	9	L3 CO3 PO2		
UNIT - IV 18			18			
5 a. From the following data estimate the number of students who have scored	5 a.	From the following data estimate the number of students who have scored				
marks less than 70 by using suitable interpolation formula. 9 L2 CO4 PO2		marks less than 70 by using suitable interpolation formula.	9	L2 CO4 PO2		
Marks 0 - 20 20 - 40 40 - 60 60 - 80 80 - 100						
Number of Students4162655017b. i) Write the Newton's divided difference formula for $y = f(x)$ up to third order	h					
ii) A function is specified by the following table:	υ.					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			9	L3 CO4 PO2		
y 0.0 0.128 0.544 1.296 2.432 4.00						
Find the value of $f'(1.1)$.		Find the value of $f'(1.1)$.				
c. Evaluate $\partial_{0}^{1} \frac{dx}{1+x^{2}}$ by using Simpson's $\frac{3}{8}$ th rule taking $n = 6$ and hence	c	Evaluate $\Delta \frac{dx}{dx}$ by using Simpson's $\frac{3}{dx}$ th rule taking $n = 6$ and hence				
		0 1 1 2	9	L2 CO4 PO1		
deduce an approximate value of p .			10			
UNIT - V186 a. i) Write the Regula-Falsi iteration formula.	6 a.		18			
ii) Find a positive root of $x^4 - x = 10$ correct to three decimal places using 9 L1 CO4 PO1		-	9	L1 CO4 PO1		
Newton-Raphson method.						
b. By using the Runge-Kutta method of order 4, find the approximate value of	b.	-				
$y(0.5)$, given $y' = \frac{1}{x+y}$, $y(0) = 1$, taking step length $h = 0.5$. 9 L3 CO4 PO2		$y(0.5)$, given $y' = \frac{1}{n+n}$, $y(0) = 1$, taking step length $h = 0.5$.	9	L3 CO4 PO2		
^{c.} Given $\frac{dy}{dx} - 2 e^x - y$, compute y at $x = 0.4$, given	c.	,				
		14.K	9	L2 CO4 PO2		
y(0) = 2, y(0.1) = 2.010, y(0.2) = 2.04, y(0.3) = 2.09 by Milne's Predictor 9 L2 CO4 PO2 and Corrector method.)	L2 COT 102		

and Corrector method.

* * * *