

- 2 a. Explain the applications of linear programming problem in different areas. 10 L4 CO1 PO1
 - b. A plant manufacturers two products A and B the profit contribution of each product has been estimated as Rs. 20 for product A and Rs 24 for product B, each product passes through three departments of the plant, the time require for each product and total time available in each department are as follows.

	Hours 1	required	Available hours	10	τc
Department	Product A	Product B	during the month	10	Lo
1	2	3	1,500		
2	3	2	1,500		
3	1	1	600		

10 L6 CO1 PO2,5

The company has a contract to supply at least 250 units of products B per month. Formulate the problem as liner programming model.

3 a. Explain the steps involved in V.A.M.

¹⁰ L2 CO2 PO1

P22MBA22

b. Four different jobs can be done on four different machines and take down time cost are prohibitively high for charge overs. The matrix below gives the cost in rupees of producing jobs i and machine j

Jobs	Machines						
	M_1	M ₂	M ₃	M_4			
J_1	5	7	11	6			
J ₂	8	5	9	6			
J ₃	4	7	10	7			
J_4	10	4	8	3			

10 L2 CO2 PO2,5

How the jobs should be assigned to the various machines so that the total cost in minimized?

OR

4 a. Examine the initial solution to the following transportation problem by V.A.M.

Destination								
		D_1	D_2	D_3	D_4	Supply		
	F_1	3	3	4	1	100		
Factory	F_2	4	2	4	2	125		
	F ₃	1	5	3	2	75		
	Demand	120	80	75	25	300		

10 L4 CO2 PO2,5

L2 CO2 PO1

10

- b. Elucidate the concept of Hungarian method and the steps for solving assignment problem under Hungarian method.
- 5 a. Determine solution of game theory problem using dominance method,

	Player A / Player B	B_1	B ₂	B ₃	B ₄					
	A ₁	3	5	4	2		10	L4	CO3	PO2
	A ₂	5	6	2	4		-			-
	A ₃	2	1	4	0					
	A4	3	3	5	2					
b. Explain c	haracteristics an		cation of	Queuing	g Models.	-	10	L2	CO3	PO1

OR

6 a. Elucidate the concept of minimax and maximin principal used in the Game theory with suitable example. 10 L3 CO3 PO1

P22M	P22MBA22					
b.	An insurance company has 3 clerks in its branch office. People arrive					
	with claims against the company are found to arrive in a poission					
	fashion at an average of 20 per 8 hours a day. The amount of time that a					
	clerk spends with the client is found to have ED with a mean time of					
	40 mins. The clients are processed in the order of their appearance.					

Page No... 3

10 L5 CO3 PO2

- i) How many hours a week can a clerk expect to spend with the clients?
- ii) How much time on an average does a client spend in the branch office?
- 7 a. The Lajwaab bakery shop keeps stock of a popular brand of cake. Previous experience indicates the daily demand as

Daily demand	Probability
0	0.01
15	0.15
25	0.2
35	0.5
45	0.12
50	0.02

10 L 3 CO3 PO2

Consider the following sequence of random number:

21, 27, 47, 54, 60, 39, 43, 91, 25, 20

Using this sequence, simulate the demand for the next 10 days. Find out the stock situation, if the owner of the bakery shop decides to make 30 cakes every day. Also estimate the daily average demand for the cakes on the basis of simulated data

b. Discuss the difference between PERT and CPM. 10 L4 CO4 PO5

OR

8 a. Explain the advantages and disadvantages of simulation. 10 L2 CO3 PO1

Contd....4

P22MBA22

b. A small project consisting of eight activities has the following

characteristics:

Activity	Preceding activity	Most optimistic time (a)	Most likely time (m)	Most pessimistic time (b)
А	None	2	4	12
В	None	10	12	26
С	А	8	9	10
D	А	10	15	20
E	А	7	7.5	11
F	B, C	9	9	9
G	D	3	3.5	7
Н	E, F, G	5	5	5

10 L2 CO2 PO5

i) Construct the PERT network for the project

ii) Prepare the activity schedule for the project

iii) Determine the critical path

PART - B (Case Study is Compulsory)

9. Solve the following assignment problem. Cell values represent cost of

assigning job A, B, C and D to the machines I, II, III and IV

Machines

		Ι	II	III	IV
	Α	10	12	19	11
Jobs	В	5	10	7	8
	С	12	14	13	11
	D	8	15	11	9

20 L3 CO2 PO5

* * * *