Time: 3 hrs

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Second Semester, B.E. - Semester End Examination; Sep. / Oct. - 2023

Applied Physics

(Civil Stream)

Max. Marks: 100

The Students will be able to:

Course Outcomes

CO1: Apply the fundamental concepts of physics to understand advanced principles of oscillations, waves, quantum mechanics, materials properties, photonics, electrical and thermal conductivity of materials.

- CO2: Identify the engineering applications of oscillations, waves, quantum mechanics, dielectric and superconducting properties of materials, photonics, electrical and thermal conductivity of materials with basic knowledge of physics.
- *CO3:* Formulate the needed mathematical expressions to answer advanced engineering problems using theoretical knowledge of applied physics.
- *CO4:* Solve the numerical problems related to engineering field in quantum mechanics, materials properties, photonics and acoustics by the knowledge of mathematics.
- CO5: Analyze the experimental results with theory by constructing the circuit/Setting up the experiment related to applied physics.
- Note: I) PART A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Physical constants: Electron mass, $m = 9.11 \times 10^{-31}$ kg, Electron charge, $e = 1.602 \times 10^{-19}$ C; Velocity of light, $c = 3 \times 10^8$ ms⁻¹; Planck's constant, $h = 6.626 \times 10^{-34}$ Js; Boltzmann constant, $K = 1.38 \times 10^{-23}$ JK⁻¹; Avogadro number, $N = 6.025 \times 10^{23}$ /mole; Permittivity of free space, $\varepsilon_o = 8.85 \times 10^{-12}$ Fm⁻¹.

Q. No.	Questions	Marks	BLs	COs	POs
	I : PART - A	10			
1 a.	Mention any two characteristics of simple harmonic motion.	2	L1	CO1	PO1
b.	Define phase velocity and group velocity.	2	L1	CO1	PO1
c.	State Hooke's law.	2	L1	CO1	PO1
d.	What is population inversion?	2	L1	CO1	PO1
e.	Define reverberation.	2	L1	CO1	PO1
	II : PART - B	90			
	UNIT - I	18			
2 a.	What is spring constant? Obtain the expression for effective force	9	L2	CO1,3	PO1
	constant for two springs in parallel combination.				
b.	Explain construction and working of Reddy's shock tube. Mention	9	L1	CO2	PO1
	any two applications of shock waves.				
c.	i) Find the magnitude of force required to stretch two springs of				
	constants 100 N/m and 300 Nm by 6 cm when springs are in series	5	L1	CO4	PO2
	and parallel.				
	ii) The distance between two pressure sensors is 150 mm. The time				
	taken by a shock wave to travel this system is 0.3 ms if the velocity	4	L2	CO4	PO2
	of sound under the same condition is 340 m/s, find Mach number of				
	shock wave.				

P22PHCE202			Page No 2		
	UNIT - II	18			
3 a.	State and explain Heisenberg's uncertainty principle and show that electron does not exist inside the nucleus.	9	L1	CO2,3	PO1
b.	Derive an expression for energy Eigen value and Eigen functions for an electron present in one dimensional potential well of infinite height	9	L1	CO3	PO1
c.	i) A particle of mass 8.9 x 10^{-31} kg has kinetic energy 100 eV. Find its de-Broglie wave length where <i>C</i> is velocity of light in space.	4	L2	CO4	PO2
	ii) The inherent uncertainty in the measurement of time spent by Iridium-191 nuclei in the excited state is found to be 1.4×10^{-10} s. Calculate the uncertainty that results in its energy in the excited state.	5	L2	CO4	PO2
	UNIT - III	18			
4 a.	Derive the relation between Young's modulus (y) , Rigidity modulus (n) , Bulk modulus (k) and Poisson's ratio (r) .	9	L1	CO3	PO1
b.	Derive an expression for couple per unit twist of a solid cylinder.	9	L1	CO3	PO1
c.	i) Calculate the force required to produce an extension of 1 mm in a				
	steel wire of length 2 m and diameter 1 mm.	5	L2	CO4	PO2
	(Given $y = 2 \ge 10^{11} \text{N m}^{-2}$)				
	ii) Calculate the couple per unit twist for a wire of length 1.5 m radius				
	0.0425 x 10^{-2} m, through an angle ($\pi/45$) radian.	4	L2	CO4	PO2
	(Given rigidity modulus = $8.3 \times 10^{10} \text{ N/m}^2$)				
	UNIT - IV	18			
5 a.	Derive an expression for energy density of radiation at equilibrium in terms of Einstein's coefficients.	9	L1	CO3	PO1
b.	Explain different types of optical fibers.	9	L1	CO2	PO1
c.	i) The average output power of a laser source emitting a laser beam of				
	wavelength 6328A° is SMW. Find the number of photons emitted per second by Laser.	5	L2	CO4	PO2
	ii) Calculate numerical aperture, V-number and number of modes in				
	an optical fiber of core diameter 50 μ m. Refractive index core and	4	L2	CO4	PO2
	cladding are 1.41 and 1.4 and wavelength of light used is 820 nm.				

Contd....3

P22PHCE202			Page No 3		
	UNIT - V	18			
6 a.	Explain the factors affecting acoustics of buildings and there remedies.	9	L1	CO2	PO1
b.	Explain with a neat diagram how flaws in a solid material are detected by non destructive method using ultrasonic's.	9	L1	CO2	PO1
c.	i) A mild steel plate has a thickness of 18 mm. An ultrasonic pulse travels in it with velocity of $5.9 \times 10^3 \text{ ms}^{-1}$. Calculate the echo time of the pulse.	3	L2	CO4	PO2
	ii) A hall has a volume of 2265 m^3 and its total adsorption is equivalent to 92.9 m^2 of open window. What will be the effect on reverberation time, if audiences fill the hall and thereby increase the absorption by audience 92.9 m^2 ?	6	L2	CO4	PO2

* * * *