Max. Marks: 100

I & II Semester, B.E. – Supplementary Semester End Examination; Nov. / Dec. - 2023

Applied Physics

(Electrical and Electronics Engineering Stream)

Time: 3 hrs

The Students will be able to:

Course Outcomes

CO1: Apply the fundamental concepts of physics to understand advanced principles of oscillations, waves, quantum mechanics, materials properties, photonics, electrical and thermal conductivity of materials.

- CO2: Identify the engineering applications of oscillations, waves, quantum mechanics, dielectric and superconducting properties of materials, photonics, electrical and thermal conductivity of materials with basic knowledge of physics.
- CO3: Formulate the needed mathematical expressions to answer advanced engineering problems using theoretical knowledge of applied physics.

CO4: Solve the numerical problems related to engineering field in quantum mechanics, materials properties, photonics and acoustics by the knowledge of mathematics.

- CO5: Analyze the experimental results with theory by constructing the circuit/Setting up the experiment related to applied physics.
- **Note:** I) PART A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Physical constants: Electron mass, $m = 9.11 \times 10^{-31}$ kg, Electron charge, $e = 1.602 \times 10^{-19}$ C; Velocity of light, $c = 3 \times 10^8$ ms⁻¹; Planck's constant, $h = 6.626 \times 10^{-34}$ Js; Boltzmann constant, $K = 1.38 \times 10^{-23}$ JK⁻¹; Avogadro number, $N = 6.025 \times 10^{23}$ /mole; Permittivity of free space, $\varepsilon_0 = 8.85 \times 10^{-12}$ Fm⁻¹.

Q. No.	Questions	Mark	s BLs	COs	POs
	I : PART - A	10			
1 a.	State de-Broglie hypothesis of matter waves.	2	L1	CO1	PO1
b.	Define superconductivity.	2	L1	CO1	PO1
c.	Define Fermi temperature and Fermi velocity.	2	L1	CO1	PO1
d.	What is fractional index change? Write its equation.	2	L1	CO1	PO1
e.	State law of mass action.	2	L1	CO1	PO1
	II : PART – B	90			
	UNIT – I	18			
2 a.	State Heisenberg's uncertainty principle. Using this principle prove	9	L1	CO1,3	PO1
	that an electron does not exist inside the nucleus of an atom.				
b.	Using time-independent Schrodinger's wave equation, derive an				
	expression for Eigen function and Eigen values for a particle in one -	9	L1	CO3	PO1
	dimensional potential well of infinite height.				
c.	i) Compute the energy of an electron associated with the wavelength	4	L2	CO4	PO2
	of 0.1 nm	7	L2	04	102
	ii) In a measurement of position and velocity of an electron moving				
	with a speed of 6 x 10^5 m/s with any accuracy of 0.01%, calculate	5	L2	CO4	PO2
	the uncertainty in its position.				

P22PHEE202			Page No 2		
	UNIT - II	18			
3 a.	What is dielectric polarization? Explain the four types of dielectric polarization mechanisms.	9	L1	CO1,2	PO1
b.	What is critical field? Explain type-I and Type-II superconductors.	9	L1	CO2	PO1
c.	i) The dielectric constant of sulphur is 3.4. Assuming the internal field is Loreortz's field, calculate the electronic polarizability of sulplur. Given; density of sulphur = $2.07 \times 10^3 \text{ kg/m}^3$ and atomic weight = 32.07	5	L2	CO4	PO2
	ii) Calculate the critical field at 7 K for a superconducting material, given that its transition temperature is 7.18 K and critical magnetic field at 0 K is 65000 A/m.	4	L2	CO4	PO2
	UNIT - III	18			
4 a.	Define Fermi factor and explain the variation of Fermi factor with energy and temperature.	9	L1	CO1,2	PO1
b.	What is a magnetic domain? Explain soft and hard magnetic materials. With examples to each.	9	L1	CO1,2	PO1
c.	i) Calculate the probability of an electron occupying an energy level0.02 eV above the Fermi level at 200 K and 400 K.	6	L2	CO4	PO2
	ii) The magnetic susceptibility of a material at room temperature is 0.82×10^{-8} . Calculate its magnetization under the action of an applied magnetic field of strength 0.25 Tesla.	3	L2	CO4	PO2
	UNIT - IV	18			
5 a.	Derive an expression for electron concentration in an intrinsic semiconductor.	9	L1	CO3	PO1
b.	Discuss the variation of Fermi level in intrinsic and extrinsic semiconductors with temperature. Show that the Fermi level lies in the middle of energy band gap in case of intrinsic semiconductor.	9	L1	CO2	PO1
c.	i) Derive an expression for electrical conductivity of an intrinsic semiconductor.	5	L2	CO4	PO2
	ii) The electron and hole mobilities of pure silicon are 0.14 m ² /V/s and $0.05m^2V^1s^{-1}$ respectively at a certain temperature. If the intrinsic carrier concentration is 1.5 x 10^{16} /m ³ , calculate the conductivity of silicon.	4	L2	CO4	PO2

Contd....3

P22PHEE202			Page No 3		
	UNIT - V	18			
6 a.	Derive an expression for energy density of radiation at thermal	9	L1	CO3	PO1
	equilibriums in terms of Einstein coefficients.				
b.	With a neat diagram, explain different types of optical fibers.	9	L1	CO2	PO1
c.	i) A medium in thermal equilibrium at temperature 300 K has two				
	energy levels with a wave length separation of 1 μ m. Find the ratio	4	L2	CO4	PO2
	of population densities of the upper and lower levels.				
	ii) Calculate the number of modes that the fiber can support, having				
	core diameter 40 $\mu m,$ with refractive indices 1.55 and 1.5 for	5	L1	CO4	PO2
	core and cladding respectively, if the wavelength of light is				
	$1.400 \ge 10^{-7}$ m propagating through it.				

* * * *