

The Students will be able to:

CO1: Apply knowledge of mathematics to understand concepts of Probability, Information theory, communication channel, source codes and cryptography.

CO2: Analyze different source codes for its efficiency used with communication channels.

CO3: Design coding schemes for a given specifications and evaluate for their error correcting capability.

CO4: Discuss different lossy / lossless data compression schemes and analyze various decoding schemes for reconstruction of transmitted data.

CO5: Discuss various cryptography algorithms for secured communication.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.	Questions	Marks	BLs	COs	POs
	I : PART - A	10			
1 a.	Define Joint entropy.	2	L1	C01	PO1
b.	Define Critical rate.	2	L1	CO1	PO1
с.	Mention the typical applications of Reed-Solomon code.	2	L1	CO1	PO1
d.	Define Plain text and Encryption.	2		CO1	
e.	Define Cipher text and Secret key.	2		CO1	
	II : PART - B	90			
	UNIT - I	18			
2 a.	Consider a source S giving out symbols S1, S2, S3 with probabilities of ¹ / ₂ , ¹ / ₄ and ¹ / ₄ respectively; i) Find the entropy of the source ii) Write all the symbols of the 2 nd extension of S and find its entropy iii) Hence find relation between H(S ²) and H(S)	9	L4	CO3	PO3
b.	Consider the source alphabets with $p(e) = 0.3$, $p(n) = 0.3$, $p(t) = 0.2$ p(w) = 0.1, $p(.) = 0.1$. Construct the arithmetic code for the input symbol sequence <i>went</i> .	9		CO3	
с.	Discus the JPEG standard for lossless compression.	9	L4	CO4	PO2
	UNIT - II	18			
3 a.	With the mathematical equation, discuss and explain noisy channel coding theorem.	9	L3	CO1	PO1

Contd.....2

P18EC53			Page No 2
b.	Consider(6, 3) linear block whose parity matrix is,		
	$P = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$	9	L4 CO2 PO2
	i) Construct Generator and Parity check matrix		
	ii) Find all Code vectors		
	iii) Compute Error detecting and Correcting capability of the code		
с.	For a systematic linear block code, the three parity check digits, C4, C5,		
	and C6 are given by,		
	$C4 = d1 \oplus d2 \oplus d3 \qquad C5 = d1 \oplus d2 \qquad C6 = d1 \oplus d3$	9	L4 CO2 PO2
	i) Construct generator matrix		
	ii) Prepare the suitable decoding table		
	iii) Decode the received words 101100 and 000110	10	
4 -	UNIT - III	18	
4 a.	Write a short note on the following:		
	i) Quasi Cyclic code	9	L1 CO1 PO1
	ii) Shortened Cyclic codesiii) Fire codes		
b.	Generator polynomial of a (7, 4) cyclic code $g(x) = x^3 + x + 1$. Find all		
0.	the code vectors for the code in non systematic form.	9	L2 CO4 PO3
с.	Explain the process of decoding BCH code with an example.	9	L2 CO2 PO2
	UNIT - IV	18	
5 a.	With the help of neat figure, discuss the process of encryption and		
	decryption. And also explain the operations used by encryption algorithms.	9	L3 CO5 PO2
b.	Discuss International Data Encryption Algorithm (IDEA).	9	L3 CO5 PO2
c.	Discuss Asymmetric (Public-Key) algorithms.	9	L3 CO5 PO2
	UNIT - V	18	
6 a.	Discuss the block Cipher principles.	9	L3 CO5 PO2
b.	With a neat flow diagram, discuss general depiction of DES encryption algorithm.	9	L3 CO5 PO2
c.	Discuss AES encryption process.	9	L3 CO5 PO2