P.E.S. College of Engineering, Mandya - 571401
 (An Autonomous Institution affiliated to VTU, Belgaum)
 Third Semester, B.E. - Automobile Engineering
 Semester End Examination; Dec. - 2014
 Mechanics of Materials

Time: 3 hrs
Max. Marks: 100
Note :i) Answer FIVE full questions, selecting ONE full question from each Unit.
ii) Assume suitably missing data if any.

Unit - I

1 a . Draw stress - strain diagram for a mild steel specimen and explain briefly the salient points.
b. A member ABCD is subjected to a force as shown in Fig. (i). Evaluate the stresses induced on the various elements and the net changes in the length of the member. Take $\mathrm{E}=210 \mathrm{GPa}$.
 steel rods. Also determine the change in length of the column if the original length of the column is 3 ms . Take $\mathrm{E}_{\mathrm{S}}=210 \mathrm{GPa}, \mathrm{E}_{\mathrm{C}}=14 \mathrm{GPa}$.

4 a. Derive an expression for normal and tangential stresses developed on an inclined plane in a member subjected to 2 dimensional stress systems. Also find the plane on which the

Unit - II

3 a . What are thermal stresses?
b. An RCC column is $300 \mathrm{~mm} \times 300 \mathrm{~mm}$ in section, the column is provided with 4 bars of 20 mm diameter. The column carries a load of 160 kN . Find the stresses in concrete and
a. Denive an expression for nomal and tangential stresses developed on an inchned plane in a maximum normal stress occurs.

Contd... 2
b. The state of stress at a point in a material under plane stress is as shown in Fig. (2).

Determine;
(i) Principal planes and stresses on them
(ii) Maximum shear stress and its plane
(iii) Resultant stress on an inclined plane inclined at 50° to the horizontal as shown in Fig. (2).

b. Draw SFD and BMD for a cantilever beam subjected to point loads as shown in Fig. (3).

FAC)

6 a. Explain the relationship between shear force and bending moment and loading intensity.
b. Draw SFD and BMD for the loaded beam as shown in Fig. (4). Mark the salient values on the fig.

Unit - IV

7 a. What are the assumptions made in theory of pure bending?
b. Two wooden planks $50 \mathrm{~mm} \times 150 \mathrm{~mm}$ each are connected together to form a cross section of a beam as shown in Fig. (5). If a bending moment of 3400 Nm is applied about the horizontal neutral axis, find the stresses at the extreme fibers of the cross section. Also calculate the total tensile force on the cross section.

8.a. Determine the differential equation for deflection $M=E I \frac{d^{2} y}{d x^{2}}$
b. A beam of uniform section is 10 m long and is simply supported at the ends. It carries concentrated loads of 100 kN and 60 kN at distances of 2 m and 5 m respectively from the left end. Calculate the deflection under each load. Find also the maximum deflection Take $\mathrm{I}=18 \times 10^{4} \mathrm{~mm}^{4}$ and $\mathrm{E}=200 \mathrm{kN} / \mathrm{mm}^{2}$.

Unit - V

9 a . A thin cylindrical shell 1 m in dia and 3 m long has a metal thickness of 10 mm . It is subjected to an internal fluid pressure of 3 MPa . Determine the change in length, diameter and volume. Also find the maximum shearing stress in the shell. Assume Poisson's ratio 0.3 and $\mathrm{E}=210 \mathrm{GPa}$.
b. A thick cylindrical pipe of outside dia 300 mm and thickness of metal 60 mm is subjected to an internal fluid pressure of 40 MPa . Determine the maximum and minimum intensifies of hoop stress and radial stresses induced in the pipe section. Plot the hoop and radial stresses induced.
10 a . A hollow circular shaft transmits a power of 300 kW at 100 rpm . If the shear stress in limited to 70 MPa and the external dia is twice the internal diameter. Calculate the external and internal dia of the shaft. Take maximum torque as 1.5 times the average torque.
b. Find the Euler's crippling load for a hollow cylindrical steel column 40 mm external dia and 4 mm thick. The length of the column is 2.5 m and is hinged at both the ends. Also compute the Rankine's Crippling load using constant $335 \mathrm{MPa}, \alpha=\frac{1}{7500}, \mathrm{E}=205 \mathrm{GPa}$.

