P13AU34 Page No 1				
	U.S.N			
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Third Semester, B.E. – Automobile Engineering Semester End Examination; Dec 2014 Material Science and Metallurgy Time: 3 hrs				
N	ote: i) Answer FIVE full questions, selecting ONE full question from each Unit. ii) Assume suitable missing data if any.			
	Unit - I			
1 a.	Write a short note on space lattice. Draw atomic arrangement in a planar surface	8		
	imperfection with a boundary.	0		
b.	Calculate the packing efficiency of a BCC structure.	4		
c.	Copper has FCC structure. Its atomic radius is 1.278x10 ⁻⁸ cm. Atomic weight of copper is	4		
	63.5. Avogadro's number is $N = 6.02 \times 10^{23}$. Calculate its density.	4		
d.	The unit cell of chromium is cubic and contains two atoms. Determine the dimensions of			
	chromium unit cell.	4		
	[Given atomic weight of chromium = 52 and density of chromium = 7.19 Mg/m^3].			
2 a.	The diffusivity of Ni atoms in the solid FCC Iron lattice is 1 x 10^{-13} m ² /s at 1300° C and			
	1×10^{-6} m ² /s at 1000° C. Calculate the activation energy in J/mole for diffusion of Ni atoms	4		
	in the FCC Iron lattice in this temperature range.			
b.	How do you distinguish between steady and non steady flow diffusion? State and explain	8		
	Fick's II-law of diffusion.	0		
c.	Explain different types of mechanism of diffusion in solids.	5		
d.	Zirconium has an HCP crystal structure and a density of 6.51 g/cm ² .			
	i) What is the volume of its unit cell in cubic meters?	3		
	ii) If the c/a ratio is 1.593, Compute the values of c and a.			
Unit - II				
3 a.	Define engineering stress and strain and true stress and strain. Find out the relationship	8		
	between true strain and engineering strain.			
b.	Differentiate between slip and twinning deformation in materials.	6		
c.	A cylindrical specimen of steel having an original diameter of 12.5 mm is Tensile tested to			
	fracture and found to have engineering fracture strength of 450 MPa. If its cross – sectional			
	diameter at fracture is 10.5 mm determine.	6		
	i) The ductility in terms of percent area reduction.			

ii) True stress at fracture.

P13AU34 Page No 2			
4 a.	Write a note on ductile fracture.	5	
b.	Define fatigue and explain mechanism of fatigue.	5	
c.	What is Griffith's theory of brittle fracture? Derive the equation for critical stress for crack	7	
	propagation.	/	
d.	What are factors affecting the fatigue life.	3	
Unit - III			
5 a.	Define Nucleation. Derive an expression for the critical size of nucleus for homogeneous	8	
	nucleation.		
b.	Lead melts at 323°C and Tin melts at 232°C. Additions of Tin to lead lowers melting point		
	of lead and addition of lead to Tin lowers the melting point of Tin. At 180°C, liquid of		
	composition 619% Tin, alpha (α) phase of composition 19.2% Tin and beta (β) phase of	6	
	composition 96.2% Tin are in thermal equilibrium. The solubilities of lead in Tin and Tin in		
	lead at room temperature are negligible draw the lead – tin phase diagram.		
c.	What are invariant reactions? With neat sketch explain, Eutectic and Eutectoid reactions.	6	
6 a.	Explain Hume – Rothery rules for solid solution behavior.	5	
b.	State Gibb's phase rule and explain the terms associated with it.	7	
c.	Explain the steps to construct TTT diagram. Draw a sketch of a TTT diagram label all the	8	
	fields for an eutectoid steel.		
Unit - IV			
	Define the process of heat treatment and classify various heat treatment processes.	8	
	Define hardenability of a material and list the factors affecting hardenability.	6	
	List out the methods in case/surface hardening. Explain carburizing with a neat sketch.	6	
	Explain Austempering and Martempring of steels.	8	
b.	Differentiate between normalizing and annealing.	6	
c.	Write short notes on i) cyaniding ii) Nitriding.	6	
9 a.	Unit - V Describe composition, properties and application of gray cast iron.	8	
	Write short notes on Al-si alloys.	4	
с.	Name the four important copper base alloys. Give composition, microstructure and their	т	
с.	applications.	8	
10 a	Define composite material. Mention the advantageous of composite materials over		
10 u.	traditional materials.	6	
b.	List the different methods of manufacturing FRP. Explain any two of them.	8	
с.	Write short note on application of composites.	6	
	······································	5	

* * * * *