P13AU34 Page No 1				
	U.S.N			
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Third Semester, B.E Automobile Engineering Semester End Examination; Dec 2015 Material Science and Metallurgy Time: 3 hrs				
	: i) Answer FIVE full questions selecting ONE full question from each unit.			
	ii) Assume suitably missing data if any.			
	UNIT - I			
1 a.	Sketch the unit cell of BCC and FCC and find out the number of atoms per unit cell and	9		
	packing factor of both BCC and FCC.			
b.	Nickel has FCC crystal structure with a lattice parameter of 0.352 nm. What is the value of	4		
	atomic radius in nanometer?			
	Classify crystal imperfections. Explain the point imperfections in brief.	7		
	State and explain the Fick's law of Diffusion.	6		
	Explain the mechanisms of diffusion in solids.	6		
c.	An Industrial component made of high carbon steel (0.8% c) is exposed to an oxidaising			
	environment at 1000°C for a period of 1 hour. Determine the depth at which the carbon	c		
	content will be reduced to 0.4%. Given D, the diffusion coefficient for C in iron is $3.11 \times 10^{-11} \text{ m}^2/\text{s}$ at 1000°C. Assume that the concentration of the carbon in the environment	8		
is zero throughout the exposure period. Take; $erf(0.5) = 0.5$. UNIT - II				
3 a. Define Engineering stress and strain, true stress and true strain. Establish the relation				
5 u.	between true stress and engineering stress.	8		
b	A low carbon steel rod is subjected to tensile load of 7000 kg. Assuming no volume change			
0.	during extension, determine engineering stress and strain, true stress and true strain. The	8		
	initial diameter of rod is 13 mm and the specimen under the load is 12 mm.	-		
c.	Define the following: i) Stiffness ii) Resilience	4		
4 a.	Define creep with typical creep curve. Explain different stages of creep.	8		
b.	What do you understand by fatigue of materials? How does a metal or alloy fail by fatigue?	6		
	Explain the stages in cup and cone ductile fracture with neat sketches.	6		
UNIT - III				
5 a.	What is solid solution? With suitable example explain the different types of solid solutions.	8		
b.	A binary alloy of M and N contains 56% phase and 44% of liquid phase. The composition			

P13AU3	34 Page No 2		
c. Sta	ate the Gibb's phase rule and explain the various terms.	5	
6. a. Dr	aw the iron-carbon equilibrium diagram and label all phase fields. Write the invariant	10	
rea	actions.		
b. W	hat is TTT diagram? Draw a TTT diagram of an eutectoid steel and explain the	10	
tra	insformation the Austenite.	10	
UNIT - IV			
7 a. W	hat is heat treatment? Classify the various heat treatment processes. Give the purposes of	7	
hea	at treatment.	/	
b. W	hat is surface hardening? Name various surface hardening processes for steels.	5	
c. De	efine hardenability. Explain with neat sketches the joining-end quench test.	8	
8 a. Ex	plain Austempering and Martempering with sketches.	8	
b. Ex	plain the following :	8	
i) /	Annealing ii) Normalising	0	
c. Di	stinguish between Hardness and Hardenability of a steel.	4	
UNIT - V			
9 a. Sta	ate and properties and uses of gray cast iron, malleable cast iron and nodular iron.	10	
b. Gi	ve the typical composition, properties and uses of the following alloys:	10	
(i)	Bronze ii) Aluminium copper alloys.	10	
10 a. W	10 a. What are the composite? Classify composite materials, why and how are composites		
suj	perior to conventional materials?	10	
b. Ex	plain the fundamentals of production of MMC's.	10	