600	ACTION C	elile in	29
ľ	×		Υ,
S	1000	1	8
A	-	man	20
T	A 3/	inna	7
21.	>	0	1000

U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Fourth Semester, B.E. - Automobile Engineering Semester End Examination; June/July - 2015 Manufacturing Technology - II

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each Unit.

UNIT - I

	UNIT - I			
1. a.	Differentiate between orthogonal cutting and oblique cutting.	6		
b.	b. Draw a neat sketch of a single point cutting tool and indicating the various tool parts and angles.			
c.	c. Explain the different types of chips formed during metal cutting.			
	Draw Merchant's force diagram.	8		
	Discuss the characteristics of the following tool materials:			
	(i) Cemented Carbines (ii) Ceramics	12		
	UNIT - II			
3 a.	Explain the mechanism of flank wear and crater wear.	6		
b.	Discuss the affect of cutting speed and tool geometry on tool life.	6		
c.	Discuss the factors affecting machinability of materials.	8		
4 a.	A cutting tool under roughing conditions in machining a mild steel part had a life of 1 hour at			
	24 m/min. Estimate the tool life on the same material for light finishing cuts at the same speed.	6		
Take $n = \frac{1}{8}$ for roughing and $\frac{1}{10}$ for finishing.				
b.	Explain different types of cutting fluids used in machining.	8		
c.	c. Discuss the factors to be considered while selecting the cutting fluid.			
	UNIT - III			
5 a.	How a lathe is specified? Discuss.	6		
b.	A brass pin is of 500 mm length and 40 mm diameter. Find the turning time to reduce the pin	6		
	to 38.8 mm in one pass, when cutting speed is 60 m/min and feed is 0.8 mm/min.	O		
c.	Differentiate between a capstan and Turret lathe.	8		
6. a	Describe crank and slotted link mechanism used in shapers with a sketch.	8		
b.	Enlist the differences between a planer and a shaper.	6		
c.	A shaper makes 36 complete strokes per minute and the stroke length is 30 cm. The shaper has	6		
a cutting stroke to return stroke ratio of 3:2. Determine the cutting speed in m/min.				

P13AU43 Page No... 2

UNIT - IV

7 a.	Sketch and explain the working principle of a radial drilling machine.						
b.	Explain the following machining operations that are performed on a drilling machine;	ned on a drilling machine;					
	(i) Reaming (ii) Counter sinking (iii) Tapping	6					
c.	A 12 mm hole is to be drilled through a 20 mm thick plate. The cutting speed is 12 m/min and						
	the feed rate is 0.12 mm/rev. Estimate the machining time. Take the over travel plus the	6					
	clearances of the tool as 5 mm.						
8 a.	Describe the constructional features of a plain cylindrical grinding machine with a sketch.	8					
b.	Explain:	6					
	(i) Natural abrasives (ii) Vitrified bonding process	U					
c.	Discuss the factors to be considered while selecting a grinding wheel for different applications.	6					
	UNIT - V						
Э а.	a. Describe the principle of operation of a horizontal milling machine with the help of sketch.						
b. Explain the following milling operations:							
	(i) Face milling (ii) Straddle milling (iii) Form milling.	6					
c.	Write a note on direct indexing method.	6					
10 a	With a sketch describe the working principle of Laser beam machining.	10					
b. Explain the following surface finishing processes:							
	(i) Lapping (ii) Honing	10					

* * * * *