\section*{U.S.N | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belgaum)
Fifth Semester, B.E. - Automobile Engineering
Semester End Examination; Dec. - 2014
Theory of Machine - II
Time: 3 hrs
Max. Marks: 100
Note: i) Answer any FIVE full questions, selecting at least TWO full questions from each part.
ii) Assume suitable missing data if any
iii) A graphical solution must be done on drawing sheet.

PART - A

1. a. State the condition of equilibrium when a member subjected with two force and a couple.
b. In a four bar mechanism shown in Fig. 1(b) torque T_{3} and T_{4} have magnitudes of 300 Nm and 2000 Nm respectively. Take $\mathrm{AD}=800 \mathrm{~mm}, \mathrm{AB}=300 \mathrm{~mm}, \mathrm{BC}=700 \mathrm{~mm}$ and $\mathrm{CD}=400 \mathrm{~mm}$. For Static equilibrium find the required input on the crank $2\left(\mathrm{~T}_{2}\right)$

2 a. What is correction couple?
b. Explain line of Action of inertia force in a link.
c. In a reciprocating engine, length of stroke is 30 cm and connecting rod is 60 cm long between centers. When the Piston has travelled 8 cm from the inner centre find:
(i) The angular position of the crank
(ii) Velocity and acceleration of the piston
(iii) Angular velocity of the connecting rod if the engine speed is 240 rpm .

3 a. Derive a relationship for hoop stress in the fly wheel.
b. TMD of multi cylinder engine with respect to mean energy line is given by $-0.35,+4.1,-2.85$, $+3.25,-3.35,+2.6,-3.65,+2.85 .-2.6 \mathrm{~cm}^{2}$ each cm^{2} represents 500 Nm of torque. The engine runs at 1000 rpm with limitation for fluctuation of speed at 2% mean speed. Find suitable dia thickness.

4 a. Derive relationship for displacement, velocity and acceleration for tangent cam with roller follower when roller is in contact with straight flank
b. In a four stroke petrol engine, The crank angle is 4° after TDC when the suction valve opens and 50° after BDC when the suction value closes. The lift is 10 mm , the nose radius is 2.5 mm and the least radius of the cam is 20 mm . The shaft rotates at 600 rpm . The cam is of the circular type with a circular nose and flanks while the follower is flat faced. Determine the maximum velocity, maximum acceleration and retardation of the valve.

PART - B

5. A shaft carries four mass A, B, C and D 200, 300, 240 and 360 kg respectively, revolving at radii $90,70,100,120 \mathrm{~mm}$ respectively. The distance from the plane A is $270 \mathrm{~mm}, 420 \mathrm{~mm}$ and 720 mm respectively. Angle between the crank A and B is $45^{\circ}, \mathrm{B}$ and C is $75^{\circ}, \mathrm{C}$ and D is 130°. Balance masses are placed 120 mm and 100 mm from D and A respectively. The distance between balancing masses is 500 mm . Find the balancing masses and their angular position if they are placed at a radius of 100 mm .
6. A six cylinder two stroke single acting diesel engine with cylinder centre lines are spaced at 650 mm . In the end view crank angle are 60° apart and in order 1-4-5-2-3-6. The stroke of each piston is 400 mm and the crank to connecting rod ratio is $1: 5$. The mass of reciprocating parts is 250 kg per cylinder and that of rotating parts is 100 kg per crank. The engine rotates at 240 rpm . Investigate the engine for out of balance primary and secondary forces and couple.
7. a. Derive a relationship for the speed of the porter governor considering frictional force.
b In a spring loaded governor of hartnell rotating masses are each 1.5 kg and rotate at a radius of 120 mm when the equilibrium speed is 550 rpm . At this speed the arms of bell crank liver are 100 mm and 75 mm respectively are vertical and horizontal. When the equilibrium speed is 575 rpm , the rotating masses at their maximum radius 145 mm . Determine spring stiffness and initial compression of the spring.

8 a. Explain the effect on stability of two wheeler when it takes a turn.
b. An aero plane makes a complete half circle of 50 m radius towards left when flying at $200 \mathrm{~km} / \mathrm{hr}$. The mass of the rotary engine and propeller is 400 kg with radius of gyration 300 mm . The engine runs at 3000 rpm counter clockwise when viewed from the rear. Determine the gyroscopic couple and its effect on the air craft.

$$
* * * * *
$$

