P1 .	BAU53 Page No 1
A A A A A A A A A A A A A A A A A A A	P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Fifth Semester, B.E Automobile Engineering Semester End Examination; Dec - 2016/Jan - 2017 Heat Transfer
Tir	ne: 3 hrs Max. Marks: 100
Noi	te: i) Answer FIVE full questions, selecting ONE full question from each unit. ii) Assume suitable missing data, if any. iii) Use of Heat transfer hand book is permitted. UNIT - I
a.	State and explain the modes of heat transfer with governing laws and equations.
b.	A 10 cm diameter copper ball is to be heated from 100°C to an average temperature of
	150°C in 30 minutes. Taking the average density and specific heat of copper, in the
	temperature range to be $\rho = 8950 \text{ kg/m}^3$, and $C_p = 0.395 \text{ kJ/kg}^\circ\text{C}$ respectively. Determine;
	i) The total amount of heat transfer to the copper ball
	ii) The average rate of heat transfer to the ball
	iii) The average heat flux.
2 a.	Derive a one-dimensional, time dependent heat conduction equation in rectangular
	coordinates. Also get the expression for constant thermal conductivity and steady state.
b.	With sketches, write down the mathematical representation of boundary condition 2^{nd} and 3^{rd}
	kind for one-dimensional heat conduction in rectangular coordinates.
	UNIT - II
3 a.	Derive an expression for the critical radius appropriate for the insulation of a cylinder.
b.	A steel tube with 50 mm inside diameter, 76 mm outside diameter and thermal conductivity
	15 W/m.K is covered with an insulative covering of thickness 20 mm and thermal
	conductivity 0.2 W/m.K. A hot gas at temperature of 330°C and heat transfer coefficient of
	400 W/m^2 .K flows inside the tube. The outer surface of the insulation is exposed to cooler air
	at 30°C and heat transfer coefficient of 60 W/m ² .K.
	i) Calculate the heat loss from the tube to the air for 10 m length of the tube
	ii) Calculate the temperature drop resulting from the thermal resistances of the hot gas flow,
	the steel tube, insulation layer and the outside air.
1 a.	Starting from the general 1-D fin equation, derive an expression for heat transfer rate through
	a circular fin of uniform cross-section assuming it to be a long fin.

Contd...2

P13AU53

- b. Fins, 12 in number with tips insulated, having thermal conductivity 75 W/m.K and 0.75 mm thickness protrude 25 mm from a cylindrical surface of 50 mm diameter and 1m length placed in an atmosphere of 40°. If the cylindrical surface is maintained at 150°C and the heat transfer coefficient is 23 W/m².K. Calculate;
 - i) The rate of heat transfer by the fins
 - ii) The percentage increases in heat transfer due to fins
 - iii) The temperature at the centre of fins
 - iv) The fin efficiency
 - v) The fin effectiveness.

UNIT - III

- 5 a. What is lumped system analysis? When it is applicable? What is the physical significance of **Biot Number?**
 - b. A solid iron rod [k = 60 W/m.K, $\rho = 7280 \text{ kg/m}^3$, $C_p = 410 \text{ J/kg.K}$ and $\alpha = 2x10^{-5} \text{ m}^2/\text{s}$] of 6 cm diameter initially at temperature 800°C, is suddenly dropped into an oil bath at 50°C. The heat transfer coefficient between the fluid and the surface is 400 W/m^2 .K. Using the transient temperature charts, determine;
 - i) The centerline temperature 10 min after immersion in the fluid
 - ii) The temperature at a depth of 2 cm from the surface 10 min after immersion in the fluid
 - iii) The energy removed from the rod during this period.
- 6 a. Define the following dimensionless numbers. Also give their physical significance, ii) Prandtl number i) Reynolds number iii) Nusselt number.
 - b. A horizontal pipe 0.3 m in diameter is maintained at a temperature of 245°C in a room where the ambient air is at 15°C. Calculate the free convection heat loss per meter length of the pipe. 11 Take the properties of air at the bulk mean temperature of 130°C as, $[k = 34.14 \times 10^{-3} \text{ W/m.K}, v = 26.63 \times 10^{-6} \text{ m}^2/\text{s} \text{ and } P_r = 0.685].$

UNIT - IV

- 7 a. Distinguish between hydrodynamic and thermal boundary layers.
 - b. Air at 20°C and at atmospheric pressure flows over a flat plate at a velocity of 3 m/s. The plate is 0.3 m long and at 60°C. The properties of air at the bulk mean temperature of 40° are $[k~=~0.02756~W/m.K,~C_p~=~1005~J/kg.K,~\rho~=~1.128~kg/m^3,~v~=~19.96x10^{-6}~m^2/s$ and $P_r = 0.699$]. Calculate ;
 - i) Velocity and thermal boundary layer thickness at 0.2 from the leading edge
 - ii) Local and average friction coefficient
 - iii) Average heat transfer coefficient
 - iv) Rate of heat transfer by convection
 - v) Total drag force on the plate per unit width

12

6

14

9

8

12

P 1	I3AU53 Page No 3			
8 a.	Briefly explain the classification of heat exchanges by flow arrangement.	8		
b.	A two-shell pass, four tube pass heat exchanger has water on the shell and brine on the tube			
	side Water is cooled from 18°C and 6°C with brine entering at -1°C and leaving at 3°C. The	10		
	overall heat transfer coefficient at 600 W/m ² .K. Calculate the heat transfer area required for a	12		
	design heat load of 24 kW.			
UNIT - V				
9 a.	State:	10		
	i) Kirchhoff's law ii) Planck's law iii) Steffan-Botzmann law.	10		
b.	Two large parallel are at 700° C and 500° C. Determine the rate of heat exchange per unit area			
	when,			
	i) The surfaces are black			
	ii) The hot surface has an emissivity of 0.9 and the cold surface has an emissivity of 0.6	10		
	iii) A large plate of emissivity 0.1 is inserted between them. Also find the percentage of			
	reduction in heat transfer because of introduction of the large plate.			
10 a	Derive an expression for the radiant heat exchange between two infinite parallel grey	10		
	surfaces.	10		
b.	Define intensity of radiation and solid angle	4		
c.	Show that the emissive power of a black body is π - times the intensity of emitted radiation.	6		

* * *