

Time: 3 hrs

U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Sixth Semester, B.E. - Automobile Engineering Semester End Examination; June/July - 2015 Mechatronics and Microprocessors

Mechatronics and Microprocessors

Max. Marks: 100

Note: Answer any FIVE full questions, selecting at least TWO full questions from each part.

PART - A

1. a.	Explain with a block diagram, the key components in a typical mechatronic system.	6								
b.	Explain the basic elements of a closed loop system.									
c.	e. Explain with a block diagram, the working of a microprocessor controlled washing machine.									
2 a.	a. Illustrate the difference between Transducers and Sensor.									
b.	Discuss the classification of transducer.									
c.	Explain the working principle of "Hall effect" sensor and its application in fluid level deletion with necessary sketches.	6								
3 a.	Explain any one type of solid state switch.	6								
b.	Discuss how control of D.C. Motors achieved through PWM technique.	8								
c.	Explain with a neat sketch the principle of variable reluctance stepper motor.	6								
4 a.	a. What are the signal conditioning processes?									
b.	Explain with sketch Non-inverting Amplifier.	7								
c.	Why protection is required? Explain Zener diode protection circuit.	8								
	PART - B									
5 a.	Briefly explain the evolution of microprocessors.	10								
b.	What is underflow and overflow?	5								
c.	State the difference between CPU and ALU.	5								
6. a	How are clock signals generated in an 8085 and what is the frequency of the internal clock?	6								
b.	Write the 8085A Architecture.	14								
7 a.	How are the address and Data lines multiplexed in 8085?	6								
b.	What are the addressing modes available in 8085?									
c.	e. Sketch the Pin configuration diagram of 8085.									
8 a.	a. What is instruction cycle, fetch and execute cycle?									
b.	Explain conditional jump instructions.	8								
c.	Explain the instruction: (i) POP (ii) RAR	6								