Р	13CV33 Page No 1	
	P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Third Semester, B.E Civil Engineering Semester End Examination; Dec 2015 Strength of Materials	
	Time: 3 hrsMax. Marks: 100	
N	<i>tote</i> : Answer FIVE full questions, selecting ONE full question from each unit.	
1		6
	Derive the expression for the deformation of a body due to self weight.	6
b	b. A load of 5 kN is to be raised with the help of a steel wire. Find the minimum diameter of the steel wire, if the stress is not to exceed 100 MPa.	4
С	. In a tension test on a mild steel rod of 12 mm diameter using a 200 mm gauge length	
	extensometer, the following observations were made:	
	Load at yield point = 28.5 kN; Ultimate load = 55 kN Breaking load = 42 kN; Extension under load of 17 kN = 0.15 mm length between the gauge marks after fracture = 242 mm. Diameter at the neck = 8.66 mm. Calculate; (i) Young's modulus (ii) yield stress ultimate stress normal and true stress at breaking point (iii) % elongation (iv) % reduction in area.	10
2 9	. Define the following terms :	
2 u	(i) Young's modulus (ii) Bulk modulus (iii) Volumetric strain	6
	(iv) Hooke's law (v) Factor of safety.	Ū
t	b. A brass rod 2.4 m long is placed between and perpendicular to two rigid vertical walls 2.43 m apart. The temperature of the rod is raised until the rod is fixed between the walls and has a compressive stress of 21 MN/m ² . The rod is restrained from bending. What is the rise in temperature? $E = 105 \text{ GN/m}^2$; $\alpha_s = 11.8 \times 10^{-6}/^{\circ}C$.	6
С	A metal cube of 100 mm sides is subjected to a system of force 200 kN(T), 250 kN(C),	
	300 kN(T) along x, y and z axes respectively. Calculate the change in volume of the cube if	8
	$\mu = 0.26$ and $E = 220$ GPa.	
UNIT - II		
3 a	. Define the following terms :	
	(i) Compound stresses (ii) Major principal stress (iii) Minor principal stress.	3
t	b. Show that the sum of normal stresses on any two planes at right angles in a general 2D stress	-
	system is a constant.	6
С	. An element has a tensile stress of 600 MN/m^2 and a compressive stress of 400 MN/m^2 acting	

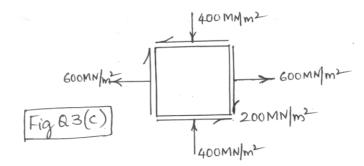
on two mutually perpendicular planes. It has 2 equal shear stresses of 200 MN/m^2 on these planes as shown in Fig. Q 3(c). Find;

Contd...2

11

8

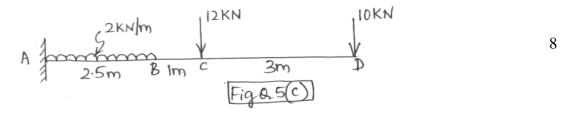
6

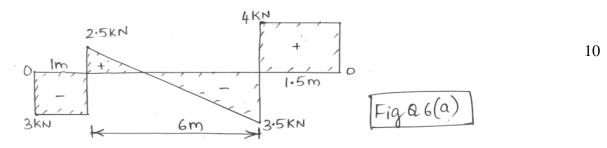

6

6

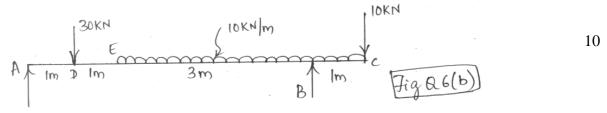
6

P13CV33


- i) The magnitude and direction of the principal stresses.
- ii) The magnitude and direction of max shear stress.

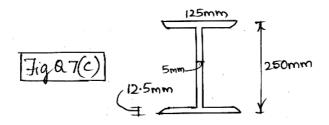

- 4 a. With usual notations prove lames equation for thick cylinders.
 - b. Derive the expressions for circumferential stress and longitudinal stress in a thin cylinder.
 - c. A thin cylinder of 1 m dia, 4 m long and of metal thickness 15 mm is subjected to an internal pressure of 3 MN/m². Determine; (i) Change in dia (ii) Change in length (iii) Change in volume ; if $\mu = 0.25$; $E = 2x10^5$ MPa.

UNIT - III

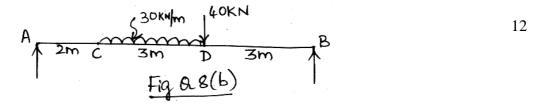

- 5 a. Derive the relationship between shear force, bending moment and rate of loading.
 - b. Draw BMD and SFD for a simply supported beam carrying a UDL of W/m throughout the entire span.
 - c. Sketch BMD and SFD for the cantilever beam shown in Fig. Q 5(c).

6. a. From the given SFD, develop the loading diagram and then draw the BMD with calculations.[Refer Fig. Q 6(a)]

b. Sketch BMD and SFD for the loaded beam indicating salient features. [Refer Fig. Q 6(b)]


Contd...3

P13CV33


Page No... 3

UNIT - IV

- 7 a. State the assumptions made in the theory of simply bending.
 - b. With usual notation, PT. $\frac{M}{I} = \frac{f}{y} = \frac{E}{R}$.
 - c. A beam of an I section shown in Fig. Q 7(c) has overall depth of 250 mm, flanges are 125 mm, 12.5 mm thick and the web is 5 mm thick. The beam rests freely on supports of 6 m apart. Find the maximum load that may be applied at a point of 1.5 m from the left end of support without producing a maximum flange stress greater than 80 MN/m².

- 8 a. Derive the differential equation for deflection.
 - b. Determine the slope at point C and the deflection at point D for the beam loaded shown in Fig. Q 8 (b).

9 a. State the assumptions made in pure torsion theory. 4 b. Define the following terms : 6 i) Torsional rigidity iii) Power transmitted by a shaft. ii) Polar modular c. Find the maximum stress in a propeller shaft with a 400 mm external and 200 mm internal diameter, when subjected to a twisting moment of 4650 Nm. If the modulus of rigidity 10 $C = 82 \text{ GN/m}^2$, how much is the twist in a length 20 times the diameter? 10 a. Define effective length of a column and slenderness ratio. 2 b. Derive the equation for crippling load by Euler's formula for a column with both the ends are 10 fixed. c. A hollow cast iron column fixed at the both ends is 6 m long, its external dia is 20 cm and thickness of metal is 2.5 cm. Find the maximum allowable axial load on it. Use Rankine's 8 formula and FOS = 5. σ_c = 560 N/mm². Constant 'a' for cost iron with hinged end is $\frac{1}{1600}$. * * * *

6

10

8