

P15CV33 Page No		
c.	At a certain point in piece of elastic material there are normal tensile stresses $f_x = 120$ MPa,	
	$f_y = 60$ MPa. In addition there is a positive shearing stress (Left up right down) $q = 80$ MPa.	
	Determine;	0
	i) The magnitude and directions of the principal stresses	8
	ii) The magnitude and direction of the maximum shearing stress	
	iii) The normal and shearing stress on a plane inclined at 30° to the direction of 120 MPa.	
4 a.	Derive an expression for circumferential stress (f_1) and longitudinal stress (f_2) in the case of	4
	thin cylinder.	
b.	Derive expressions for change in diameter, change in length and change in volume of a thin	0
	cylinder.	8
c.	A thick cylinder of 400 mm material diameter and 100 mm thickness contains a fluid at a	

pressure of 80 N/mm². Find the maximum and minimum hoop stresses across the section. 8 Also sketch the radial and hoop stress distribution across the section.

UNIT - III

5 a. Define bending moment, shear force, BMD and SFD.

- b. Derive relationship between intensity of uniformly distributed load w, shear force F and 6 bending moment M.
- c. Draw BMD and SFD for the beam shown in Fig. Q. 5(c).

$$A = \frac{100 \text{ kN}}{100 \text{ kN}} = \frac{100 \text{ kN}}{100 \text{ kN}$$

4

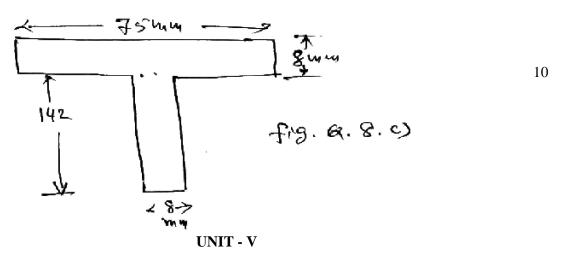
6

- 6 a. Define point of contra flexure, bending moment (Hogging and sagging bending moment) and shear force (positive and negative shear force).
 - b. For a simply supported beam carrying uniformly distributed load ω/m over entire span l,

Show that maximum B.M, $M_{\text{max}} = \frac{\omega l^2}{8}$ at $x = \frac{l}{2}$ from either support.

c. Draw BMD and SFD for the beam shown in Fig. Q 6(c). Find the point of contra flexure and maximum bending moment.

$$A \xrightarrow{B} \xrightarrow{c} \xrightarrow{D} \xrightarrow{E} \xrightarrow{Frg} \xrightarrow{G} \xrightarrow{G} \xrightarrow{Contd.....3}$$


3

7

7

UNIT - IV

- 7 a. State assumptions mode while deriving (Bernauli) bending equation.
 - b. Derive bending equation (Bernauli equation) with usual notations.
 - A wooden beam 10 m long 360 mm deep and 300 mm wide is simply supported and loaded с. with a uniformly distributed load. Find the safe total load. Factor of safety = 6, maximum 10 shear intensity of the material is = 60 MPa.
- 8 a. Draw shear stress variation diagram for various standard sections (including triangle, 3 rhombus and T - Section).
 - Show that maximum shear stress is 1.5 times average shear stress for a rectangular section. b.
 - c. A T-Section beam shown in Fig. Q 8(c) is subjected to a shear force of 9 kN at a section. Determine the amount of maximum intensity of shear stress and draw the distribution of shear stress across the depth of the section.

9 a.	State assumptions made while deriving deflection equation.	3
b.	Derive deflection equation with usual notations.	7
c.	A simply supported beam has a span of 6 m. It carries two concentrated loads of 40 kN and	
	10 kN at distance of 2 m and 4 m from left hand support. Find the deflection under the	10
	40 kN load and the position and magnitude of maximum deflection. $E = 200$ GPa and	10
	$I = 40 \times 10^{-6} m^4$.	
10 a.	Derive torque equation with usual notations.	7
b.	State assumptions made while deriving torque equation.	3

- State assumptions made while deriving torque equation. b.
 - c. Calculate the dimensions of a hollow steel shaft to transmit 600 kW at a speed of 120 r.p.m. the maximum torque being 1.12 times the mean (12% extra). The internal diameter of the 10 shaft is 60% of the outside diameter and the greatest intensity of shear stress in the steel is limited to 28 MN/m^2 .