
| P15C                                                                                                                                                                                      | <b>V35</b> Page No 1                                                                                     |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                                                                                                                                                                                           | U.S.N                                                                                                    |  |  |  |  |  |  |
| P.E.S. College of Engineering, Mandya - 571 401<br>(An Autonomous Institution affiliated to VTU, Belgaum)<br>Third Semester, B.E Civil Engineering<br>Make-up Examination; Jan/Feb - 2017 |                                                                                                          |  |  |  |  |  |  |
| Time                                                                                                                                                                                      | Fluid MechanicsTime: 3 hrsMax. Marks: 100                                                                |  |  |  |  |  |  |
| Note:                                                                                                                                                                                     | Answer <b>FIVE</b> full questions, selecting <b>ONE</b> full question from each unit.<br><b>UNIT - I</b> |  |  |  |  |  |  |
| 1 a.                                                                                                                                                                                      | Define Fluid mechanics. Explain its scope and importance.                                                |  |  |  |  |  |  |
| b.                                                                                                                                                                                        | Differentiate between :                                                                                  |  |  |  |  |  |  |
|                                                                                                                                                                                           | i) Real fluid and Ideal fluid ii) Liquid and Gas.                                                        |  |  |  |  |  |  |
| c.                                                                                                                                                                                        | A 15 cm $\phi$ vertical cylinder rotates concentrically inside another cylinder of $\phi$ 15.10 cm.      |  |  |  |  |  |  |
|                                                                                                                                                                                           | Both cylinders are 25 cm high. The space between the cylinders is filled with a liquid                   |  |  |  |  |  |  |
|                                                                                                                                                                                           | whose viscosity is unknown. If a torque of 12.0 N-m is required to rotate the inner                      |  |  |  |  |  |  |
|                                                                                                                                                                                           | cylinder at 100 rpm. Determine the viscosity of the fluid.                                               |  |  |  |  |  |  |
| 2 a.                                                                                                                                                                                      | Define capillarity. Derive an expression for capillary.                                                  |  |  |  |  |  |  |
| b.                                                                                                                                                                                        | With neat sketch, explain surface tension. Derive the equation for pressure inside a liquid droplet.     |  |  |  |  |  |  |
| c.                                                                                                                                                                                        | The dynamic viscosity of oil used for lubrication between a shaft and sleeve is 6 poise.                 |  |  |  |  |  |  |
|                                                                                                                                                                                           | The shaft is of diameter 0.4 m and rotates at 190 rpm. Calculate the power lost in the                   |  |  |  |  |  |  |
|                                                                                                                                                                                           | bearing for a sleeve length of 90 mm. The thickness of the oil film is 1.5 mm.                           |  |  |  |  |  |  |
|                                                                                                                                                                                           | UNIT - II                                                                                                |  |  |  |  |  |  |
| 3 a.                                                                                                                                                                                      | State and prove Pascal's law.                                                                            |  |  |  |  |  |  |
| b.                                                                                                                                                                                        | With neat sketch, explain the working of "Diaphragm" Pressure gauge.                                     |  |  |  |  |  |  |
| c.                                                                                                                                                                                        | The diameter of small piston and a large piston of a hydraulic jack are 3 cm and 10 cm                   |  |  |  |  |  |  |
|                                                                                                                                                                                           | respectively. A force of 80 N is applied on the small piston. Find the load lifted by the                |  |  |  |  |  |  |
|                                                                                                                                                                                           | large piston when,                                                                                       |  |  |  |  |  |  |
|                                                                                                                                                                                           | i) The piston are @ the same level                                                                       |  |  |  |  |  |  |
|                                                                                                                                                                                           | ii) Small piston is 40 cm above the large piston.                                                        |  |  |  |  |  |  |
|                                                                                                                                                                                           | The density of the fluid in the jack is given as $1000 \text{ kg/cm}^3$ .                                |  |  |  |  |  |  |
| 4 a.                                                                                                                                                                                      | Derive an expression for the depth of centre of pressure from free surface of liquid of an               |  |  |  |  |  |  |
|                                                                                                                                                                                           | Inclined plane surface submerged in the liquid.                                                          |  |  |  |  |  |  |
| b.                                                                                                                                                                                        | Find the horizontal and vertical component of water pressure acting on the face of a                     |  |  |  |  |  |  |
|                                                                                                                                                                                           | Tainter gate of 90° sector of radius 4 m as shown in Fig. (1). Take width of gate unity.                 |  |  |  |  |  |  |
|                                                                                                                                                                                           |                                                                                                          |  |  |  |  |  |  |

,



| 5 a. | Differentiate between the Euluian and Lagrangian method of representing fluid flow. |                 |                |                  |   |  |
|------|-------------------------------------------------------------------------------------|-----------------|----------------|------------------|---|--|
| b.   | Define :                                                                            |                 |                |                  | Q |  |
|      | i) Stream line                                                                      | ii) Streak line | iii) Path line | iv) Stream tube. | 0 |  |
| c.   | The velocity component of the 2-D plane motion of a fluid are;                      |                 |                |                  |   |  |

$$u = \frac{y^2 - x^2}{\left(x^2 + y^2\right)^2} \text{ and } v = \frac{2xy}{\left(x^2 + y^2\right)^2}$$
8

Show that the fluid is incompressible and flow is Irrotational.

- 6 a. State Bernoulli's theorem. Starting from Euler's equation of motion along a stream line, derive Bernoulli's equation. List the assumptions.
  - b. State Momentum equation. Write expression for the same.
  - c. A horizontal Venturimeter with inlet diameter 20 cm diameters and throat diameter 10 cm is used to measure the flow of water. The pressure at inlet is 17.658  $\ensuremath{\,\text{N/cm}^2}$  and the vacuum pressure at the throat is 30 cm of Hg. Find the discharge of water through venturimeter  $c_d = 0.98$

## UNIT - IV

| 7 a. | List the cases (types) in minor losses.                                                        | 4  |
|------|------------------------------------------------------------------------------------------------|----|
| b.   | Find the head lost due to friction in a pipe of diameter 300 mm and length 50 m, through       |    |
|      | which water is flowing at a velocity of 3 ms <sup>-1</sup> using,                              | 6  |
|      | i) Darcy formula ii) Chezy's formula for which $C = 60$ , Take $\mu$ for water = 0.01.         |    |
| c.   | Derive Darcy-Weisbach equation for head loss due to friction in pipe.                          | 10 |
| 8 a. | Explain the phenomenon of water hammer in pipes.                                               | 5  |
| b.   | The water is flowing with a velocity of 1.5 ms <sup>-1</sup> in a pipe of length 2500 m and of |    |
|      | diameter 500 mm. At the end of the pipe, a value is provided. Find the rise in pressure if     | 5  |
|      | the value is closed in 25 sec. Take the value of $C = 1460 \text{ ms}^{-1}$ .                  |    |
| c.   | Give expression for rise in pressure due to gradual closure and sudden closure of values.      | 10 |

Contd...3

8

4

8

## UNIT - V

| 9 a.  | Define Hydraulic coefficients of an orifice. Derive the relation between them.              |   |  |
|-------|---------------------------------------------------------------------------------------------|---|--|
| b.    | Derive the expression $C_v = \frac{X}{2\sqrt{YH}}$ with usual notation.                     | 5 |  |
| c.    | An internal mouth piece of 800 mm diameter is discharging water under a constant head       |   |  |
|       | of 8 m. Find the discharge through mouthpiece. when,                                        | 6 |  |
|       | i) The mouth piece is running free                                                          |   |  |
|       | ii) The mouth piece is running full.                                                        |   |  |
| 10 a. | Derive an expression for discharge over a triangular notch/weir.                            | 8 |  |
| b.    | What is the difference between a notch and a weir?                                          | 4 |  |
| c.    | i) A broad-crested weir of 50 m length, has 50 cm height of water above its crest. Find the |   |  |
|       | maximum discharge. Take $C_d = 0.6$ . Neglect velocity approach.                            | 8 |  |
|       | ii) If the velocity of approach is to be taken into consideration, find the maximum         | 0 |  |
|       | discharge when the channel has a cross-sectional area of 50 $\text{m}^2$ on the u/s side.   |   |  |
|       |                                                                                             |   |  |

\* \* \*

## P15CV35