P0	P08CV63	Page No 1					
	U.S.N						
-	P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Sixth Semester, B.E Civil Engineering						
Semester End Examination; June/July - 2015 Geotechnical Engineering - II							
No	Note: Answer any FIVE full questions, selecting at least TWO full	questions from each part.					
	PART - A						
1 a.	. List objectives of soil Exploration.						
b.	D. Discuss Wash boring technique.						

c.	Define: i) Borelog	ii) Critical distance	iii) Inside clearance	iv) Area ratio	7
	v) Disturbed samples	vi) Recovery ratio	vii) Significant depth		/
2. a.	List various methods of dewate	ring techniques and the	eir suitability.		4
b.	Explain Multistage well point s	ystem along with a nea	at sketch.		6
c.	Discuss pumping out test in an	Unconfined aquifer.			6
d.	Explain Hvorslev's method of	determination of positi	on of ground water tab	le.	4
3 a.	State the assumptions of Boussin	nesq theory and Wester	rgaard's theory.		3
b.	In an industrial area there is a	surface loaded circula	r silo of 30 m diamet	ter carrying a load	
	intensity of 150 kPa. Find the in	tensity of vertical stres	s at depth of 5 m and 1	0 m below ground	6
	level along central axis of silo. U	Jse Boussinesq theory.			
c.	With a neat sketch, Explain New	Marks chart its usage	and limitation.		11

- 4 a. Define flow nets. What are the characteristics of flownet. Explain their uses. 8
 - b. An Earthen Dam made of a homogeneous material has following data: Horizontal filter of 25 m is provided inward from downstream toe of the dam Fig Q. 4(b)

Perform necessary calculations to obtain a phreatic line and plot the phreatic line.

12

6 7

12

PART – B

5 a.	List the assumptions made in Rankine's Earth pressure theory with Coulomb's Earth pressure	3
	theory.	3
b.	Discuss Rebhann's graphical method.	5
c.	A 5 m high retaining wall has cohesive backfill with C = 5 kN/m ² , $\phi = 30^{\circ}$, $\gamma = 17.5$ kN/m ³ .	12
	Determine active Earth pressure before and after formation of crack. Find location of resultant	12
	pressure. Draw pressure diagram indicating the magnitude of pressures acting.	
6 a.	Explain different types of slope failures.	5
b.	Define factor of safety of slopes. Bring out the different factors of safety in analyzing stability	5
	of slopes.	5
c.	Explain friction circle method of analysis of slopes.	10
7 a.	Differentiate general shear and local shear failure.	5
b.	List Terzaghi's bearing capacity theory assumptions and limitations.	6
c.	A foundation 2 m x 2 m is at a depth of 1.2 m on Sandy soil with $\gamma = 17.7 \text{ kN/m}^3$. Properties of	
	soil are C = 0 ϕ = 30°. Take N _q = 22. N _γ = 20. Find safe bearing capacity for:	9
	i) W.T. at Ground level ii) W.T. at base of footing.	9
	Take $\gamma = 16 \text{ kN/m}^3$; $\gamma_{\text{sat}} = 17.7 \text{ kN/m}^3$. Assume of safety = 3.	
8 a.	Discuss different types of settlement.	8
b.	A clay layer whose total settlement under a given loading is expected to be 12 cm settles 3 cm	
	at the end of One month after application of load increment. How many months will be	

at the end of One month after application of load increment. How many months will be required to reach a settlement of 6 cm? How much settlement will occur in 10 months? Assume double drainage and degree of consolidation as 25% & 50%.

μ	25	45	55	65	75	85
$ au_v$	0.0492	0.159	0.238	0.342	0.477	0.684

* * * * *