



Note: i) Answer any *FIVE* full questions, selecting at least *TWO* full questions from each part. ii) IS : 800–2007, steel table are permitted.

PART – A

- 1 a. A hollow box section of outer dimensions 300 mm width x 600 mm depth is made up of 12 mm thick plate throughout. Determine its shape factor and plastic moment capacity take 10 $f_v = 250 \text{ N/mm}^2$.
 - b. Determine the position of plastic hinge from support B for the beam shown in Fig. Q 1(b) and the magnitude of collapse load.

2 a.	What is rolled structural steel sections? Write the various types of rolled steel sections	6
	manufacturing.	0
b.	Mention advantages and disadvantages of steel structures.	6
c.	Explain briefly how limit state method differs from working stress method of design.	8
3 a.	Explain the various modes of failure of bolted connections with neat sketches.	6
b.	Design a bolted connection between the flange of a column ISHB 450 $@$ 907 N/m and a	
	bracket plate 15 mm thickness. The bracket plate is supporting a load of 150 kN at an	14
	eccentricity of 350 mm. Adopt 20 mm dia HSFG bolts of property class 8.8 ($f_{yb} = 640 \text{ N/m}^2$	
	$f_{ub} = 800 \text{ N/mm}^2$ and $f_u = 410 \text{ N/mm}^2$)	
4 a.	Explain the common defects in the welded connections.	6
b.	Calculate the load that can be transmitted through the eccentric welded connection shown	
	in Fig. Q 4(b). Use size of weld is 6 mm.	14

PART – B

5 a.	What is a lug angle? Explain in brief, with a neat diagram.	5
b.	An ISA 100 x75x6 mm is connected to 10 mm thick gusset plate with 6 – 16 mm dia, bolts	
	to transfer tension. Determine design tensile strength if longer leg is connected to gusset	15
	plate. Take pitch and edge distance 40 mm.	
6 a.	How does the behavior of a compression member differ based on its length?	5
b.	Calculate the compressive strength of a built - up column consisting of ISHB 300 @	
	630 N/m with one cover plate 350x20 mm on each flange and having length of 5 m.	15
	Assume that the bottom of the column is fixed and top is also fixed, take $f_y = 250 \text{ N/mm}^2$.	
7 a.	Define column base; write the types of column bases used.	5
b.	A column ISHB 300 @ 630 N/m with one cover plate 400x20 mm on each flange of a	
	column is carrying an axial load of 1800 kN. Design gusseted base. Assume M_{20} concrete	15
	and $\sigma_y = 260 \text{N/mm}^2$ and partial safety factor for load 1.5. Gusset plate is 16 mm thick and	15
	gusset angles are ISA 150x115x15 mm.	
8 a.	Write a note on laterally supported and laterally unsupported.	5
b.	Determine:	
	i) Design bending strength,	
	ii) Design shear strength	1.5
	iii) Intensity of UDL the beam can carry under service conditions	15
	iv) Max. deflection for a simply supported 5m steel beam ISMB 400 @ 616 N/m.	
	Assume $f_y = 250 \text{ N/mm}^2$.	

* * * * *