

Note: i) Answer any *FIVE* full questions selecting at least *TWO* full questions from each part. *ii)* Any missing data may be suitably assumed

PART - A

- 1 a. Discuss the effects of seasonal moisture changes, bearing capacity, neighboring structure and sloping ground on the selection of depth of foundation.
 - b. A square footing, 2 m side is proposed on a 10 m thick soil layer, made of normally consolidated saturated clay, to carry a load of 800 kN. Estimate the total settlement using the following details. Water content = 30%, Liquid limit = 80%, saturated unit weight = 18 kN/m^3 , soil modulus = 24 MPa: Poisons ratio = 0.3, Influence factor = 0.87, coefficient of secondary compression = 0.0002. A laboratory sample, 48 mm thick with double drainage facility, experienced complete consolidation under same pressure, is two hours life span of structure = 150 years. Assume single drainage from top in the field. If permissible settlement is 60 mm by considering G = 2.7.

ר	Explain the procedure f	an manamanti amina	of footing for agual	a a t t l a ma a m t	-
7. A	Explain the procedure i	or proportioning (or rooming for equal	sememeni c	1
- u.	Emplain the procedure	or proportioning.	or rooting for equa	Settlement.	1

- b. What are the situations, under which, raft foundation becomes essential.
- c. Proportion a combined footing for the following details, two columns, 300 mm x 300 mm in size spaced 3 m centre to centre carry loads of 600 kN and 400 kN. The footing can not extend beyond the edges of the column length wise. Allowable bearing pressure = 100 kPa.
- 3 a. What are the situations warranting pile foundations?
 - b. Briefly explain negative skin friction of piles.
 - c. A 350 mm x 350 mm reinforced concrete pile 20 m long is driven through loose material and then into dense gravel to a final set of 3 mm / blow, using a 30 kN single acting hammer with a stroke of 1.5 m. Determine the ultimate driving resistance of the pile if it is fitted with a helmet, plastic dolly and some packing on the top of the pile. The weight of the helmet and dolly is 5 kN. The other details are :

Weight of pile = 60 kN; weight of hammer = 30 kN; pile hammer efficiency η_h = 0.85; the coefficient of restitution, e = 0.38; sum of the elastic compression of the pile cap, pile material and soil is 19.6 mm.

8

12

6

8

6

4

10

P08CV831 Page No 2						
4 a. What are the components	of a well foundation? Explain them briefly with neat sketch.	10				
b. With appropriate sketche foundation during sinking	es, discuss the causes and remedies for tilt and shift of well	10				
PART - B						
5 a. What is a caisson? How c	aissons are classified based on the method of construction?	4				
b. What is a floating caisson	? How is its stability checked?	8				
c. Determine the cross secti	onal dimensions of a cylindrical open caisson to be sunk through					
33 m of sand and water t	to bed rock if the allowable bearing pressure is 1800 kN/m^2 . The					
caisson has to support a	load of 55 MN from the superstructure. Test the feasibility of	8				
sinking if the skin friction	h is 30 kN/m^2 . Also calculate the necessary thickness of the seal.					
Assume $\gamma_e = 24 \text{ kN/m}^2 \text{ ar}$	$\operatorname{nd} \gamma_{w} = 10 \text{ kN/m}^{2}.$					
6 a. Discuss the method of ide	entifying expensive soil from laboratory tests.	6				
b. What are the different m	What are the different methods of foundation treatment for structure on expansive soil?					
Explain any two of them.		8				
c. Determine the capacity	of 4.0 m long single bulb of 50 cm stem diameter. Average	6				
cohesion value both withi	in the shaft of pile depth and below the toe is 100 kN/m^2 .	0				
7 a. Derive the expression for	natural frequency of un-damped free vibration of single degree of	8				
freedom system.		0				
b. Discuss the criteria for the	e design of foundation for reciprocating machine.	6				
c. In a factory, a rotary m	c. In a factory, a rotary machine having a frequency of 2000 rpm is proposed. Sugge					
method of vibration isolat	tion and control, for its foundation.	6				
8 a. Write a note on the design	n criteria for the foundation of a tall chimney.	10				
b. Explain the foundation de	esign procedure for Antenna and radars.	10				

* * * * *