FEET	parot cet	Si appa	>
S T	1000	計	1 9 6
1	3000	野 	*
200	2		2

U.S.N					
U.D.IV					
0.2.2.					

P.E.S. College of Engineering, Mandya - 571 401
(An Autonomous Institution affiliated to VTU, Belgaum)

Eighth Semester, B.E. – Civil Engineering Semester End Examination; June - 2016 Industrial Wastewater Treatment

Time: 3 hrs Max. Marks: 100

Note: i) Answer any FIVE full questions, selecting atleast TWO full questions from each part. ii) Draw neat sketches / flow sheets wherever necessary.

	PART - A	
1 a.	Illustrate the scope of Industrial wastewater treatment studies in attaining zero pollution.	6
b.	Highlight the various points of that are differentiating domestic wastewater and Industrial wastewater.	6
c.	What is sampling? Comment on importance and types of samples.	8
2 a.	List various factors that governs self purification of streams and explain any two of them.	6
b.	With the help of neat sketch briefly explain Oxygen-sag curve with the salient points.	6
c.	A city discharges its wastewater into a stream having a saturation $D.O = 10.2 \text{ mg/L}$ and the	
	following data were observed just after the outfall.	
	Temperature = 17.5°C, D.O. Concentration = 9.0 mg/L	
	Ultimate $BOD_5 = 30 \text{ mg/L}$ at 17.5°C, Reacration constant and Deoxygenation constant 17.5°	8
	are 0.4/day and 0.25/day respectively. Determine the time required to reach critical Deficit	
	and the distance in kilometer at which the critical deficit occurs from outfall given the	
	velocity stream is 0.2 m/s.	
3 a.	Write brief note on various methods that are adopted to reduce volume of an industrial wastewater.	8
b.	List various steps that can be adopted to reduce the strength of an industrial waste and explain any two of them in detail.	8
c.	What is equalization? Explain the methods of achieving equalization.	4
4 a.	List various methods adopted for removal of inorganic suspended solids and explain any one	_
	of them.	6
b.	Explain briefly the processes involved in treating organic solids.	8
c.	What are colloids? Explain the phenomenal aspects involved in removal of colloidal particles.	6

PART - B

5 a.	Discuss the pros and cons of combined treatment of different wastewater.			
b.	Illustrate the different aspects of discharging a raw waste, partially treated and completely	10		
	treated waste into streams.	10		
6 a.	Comment on the significance of process flow sheets of an industry in planning wastewater	6		
	treatment facilities.	U		
b.	Write a brief note on by-products recovered in distillery wastes.	4		
c.	With the help of a flow diagram explain various processes that contribute to waste water	10		
	generation during vegetable tanning.	10		
7 a.	Discuss the origin and characteristics of the waste water from a dairy industry.	10		
b.	How the wastes from the following units of steel plants are treated?			
	(i) Coke ovens	10		
	(ii) Pickling Bath			
8 a.	Illustrate the simplified flow diagram of a Kraft pulp and paper mill.	10		
b.	Draw a flow sheet for a treatment of wastes from a large synthetic drag manufacturing	10		
	industry.			

* * * *