U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Third Semester, B.E. - Computer Science and Engineering Semester End Examination; Dec. - 2014 Digital Logic Design

Time: 3 hrs Max. Marks: 100

Note: i) Answer FIVE full questions, selecting ONE full question from each Unit. ii) Assume suitably missing data if any.

Unit - I

- 1. a. What are universal gates? Realize the following functions using minimum No. of any universal gates.
 - i) $a\overline{x} + \overline{a}x + axy.(\overline{a} + \overline{x} + \overline{y})$

8

- ii) $\overline{ab} + ab$
- b. Simplify the following functions using K map.
 - i) $F(a,b,c,d) = \sum m(1,2,8,9,13) + d(0,5,10)$

6

- ii) $F(w,x,y,z)=\pi m(0,2,5,7,8,14)+d(4,6,10,12)$
- c. Simplify the following function using two variables K-map.

$$F(a,b,c) = \sum m(0,2,4,6,7)$$

6

[Note: take 'C' inside the map) and realize using logic gates.

- 2 a. What is the advantage of Quine-Mc Clusky method over K map?
 - Simplify the following function using Quine Mc Clusky method.

10

$$F(a,b,c,d) = \sum m(3,6,7,11,12,13,14,15)$$

- b. Design a 4 input 1 output logic circuit that outputs
 - i) '1 when no. of '1's in the input is greater than no. of '0's.

10

- ii) '0' when no. of '1's is less than no. of '0's.
- iii) don't care other wise.

Unit - II

3 a. Design seven segments Decoder circuit.

10

b. Design BCD to Excess-3 code converts circuit.

10

4 a. Implement full adder using 4 : 1 multiplexer.

6

b. What is comparator? Design 2 bit comparator circuit.

8

c. Design 2 bit fast adder.

6

Unit - III

5 a.	Explain J.K. master slave Flip-Flop.			
b.	Derive characteristic equations for SR, K and T flip flop.	9		
c.	How do you design the following,			
	i) D Flip-flop using SR Flip Flop.	4		
	ii) T Flip – Flop using JK Flip Flop.			
6 a.	Explain the design of following shift registers:			
	i) Serial in serial out.	10		
	ii) Parallel in Parallel out.			
b.	Design sequence detector and sequence generator circuit using shift register.	10		
	Unit - IV			
7 a.	Design a synchronous 3bit counter T-Flip Flop that has the following containing sequence	10		
	0, 2, 4, 6, 7, 0.	10		
b.	Explain successive approximation A/D converter with a neat diagram.	10		
8 a.	Design 3 bit asynchronous up counter using JK flip flops.	10		
b.	Explain Dual slope A/D converter circuit.	10		
	Unit - V			
9 a.	Write VHDL Code for full adder and Full subtractor.	10		
b.	Briefly explain TTL parameters.	10		
10 a	Write VHDL code for 2:4 decoder and 4:1 multiplexer.	10		
b.	Explain CMOS NOT, NOR and NAND circuits. How CMOS differs from TTL?	10		

* * * * *