P08CS34	Page No 1	
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Third Semester, B.E Computer Science and Engineering Semester End Examination; Dec 2014 Discrete Mathematical Structures		
Time: 3 hrs	Max. Marks: 100	
Note: i) Answer FIVE full questions, selecting ONE full question from ea ii) Assume suitable missing data if any. Unit - I	n Onu.	
. a. In how many ways can 10 identical pencils be distributed among 5 ch	ildren in the following	
cases;		
(i) There are no restrictions		
(ii) Each Child gets at least one pencil		
(iii) The youngest child gets at least two pencils		
b. How many arrangements are there of all the letters in SOCIOLOGICA	such that	
i) letter A and G are adjacent		
ii) are all the vowels adjacent		
c. How many positive integers n can we form using the digits 3,4,4,5, exceed 5,000,000?	5,6,7, if we want n to	
2 a. Define a set, proper subset and power set, with an example.		
b. The probability that a contractor will get a plumbing contract is $\frac{2}{3}$ and	the probability that he	
will not get an electric contract is 5/9, if the probability of getting at le what is the probability that he will get both the contracts?	ast one contract is 4/5,	
c. For any sets A,B,C,D, prove by using laws that $(A \cap B) \cup (A \cap B \cap \overline{C})$	$\cap D \big) \cup \big(\overline{A} \cap B \big) = B$	
Unit - II	, , , ,	
a. Define Tautology and contradiction, prove that	the proposition	
$\left[(P \to r) \land (q \to r) \right] \to \left[P \lor q \to r \right] \text{ is a tautology.}$		
b. Define converse, inverse and contra positive of a conditional with traconverse, inverse and contra positive of the following statement."If triangle is not isosceles, then it is not equilateral"	th table, also state the	
c. Prove the logical equivalence without using truth table. $(p \rightarrow q) \land (\neg q \land (r \lor \neg q)) \Leftrightarrow \neg (q \lor p)$		

P08CS34

Page No... 2

4

6

7

6

7

7

4 a. Establish the validity of the following argument

$$\forall x, [p(x) \lor q(x)]$$

$$\forall x, [\{\neg p(x) \land q(x)\} \to r(x)]$$

$$\vdots \forall x[\neg r(x) \to p(x)]$$

$$6$$

b. if $p(x): x \ge 0$, $q(x): x^2 \ge 0$, $r(x): x^2 - 3x - 4 = 0$ $S(x) = x^3 - 3 > 0$ Find truth values of

i)
$$\exists x [p(x) \land q(x)]$$
 ii) $\forall x [p(x) \rightarrow q(x)]$ iii) $\forall x, q(x) \rightarrow s(x)$ iv) $\forall x [r(x) \lor s(x)]$

c. Negate and simplify each of the following: i) $\forall x \left[p(x) \land \neg q(x) \right]$

ii)
$$\exists x, \left[\left[p(x) \land q(x) \right] \rightarrow r(x) \right]$$
 4

d. Find whether the following argument is valid if a triangle has two equal sides, then it is isosceles if a triangle is isosceles, then it has two equal angles, <u>The triangle ABC does not have two equal angles</u>

 \therefore ABC does not have two equal sides

Unit - III

5 a. Define principle of mathematical induction. Establish the following by mathematical induction $\sum_{i=1}^{n} i(2^{i}) = 2 + (n-1)2^{n+1}$

- b. Find a unique solution for the recurrence relation $4a_n 5a_{n-1} = 0$, n > 1, $a_0 = 1$.
- c. Let F_n denote n^{th} Fibonacci number Prove that

$$\sum_{i=1}^{n} \frac{F(i-1)}{2^{i}} = 1 = \frac{F(n+2)}{2^{n}}$$
7

6 a. If f: A \rightarrow B, g: B \rightarrow C and h: C \rightarrow D are three functions. Then prove that (hog)of=ho(gof)

b. Let f: $Z \rightarrow Z$ be defined by f(a) = a + 1 for $a \in Z$ show that f is a bijection.

c. Find the number of ways of distributing four district objects among three identical containers with some container possibly empty.

Unit - IV

7 a. $A=\{1,2,3,4\}, B=\{w, x, y, z\}$ and $C=\{5,6,7\}$ also let R_1 be a relation from A to B, defined by $R_1 = \{(1, x), (2, x), (3, y), (3, z)\}$ and $R_2 \& R_3$ be relation from B & C be defined by $R_2 = \{(w, 5), (x, 6)\}, R_3 = \{(w, 5), (w, 6)\}$ Find R_10R_2 and R_10R_3

- b. Define partially ordered set and draw and Hasse diagram of all positive divisior of 36.
- c. A={1,2,3,4,5,6,7,8,9,10,11,12} on this set define the relation R by (x,y)∈ R if and only if (x-y) is a multiple of 5. Verify the R is an equivalence relation.

PO	Page No 3		
8 a.	Define least element, greatest element, minimal, maximal element of a relation R on A.		
b.	Find the number of equivalence relations that can be defined on a Finite set A with $ A = 6$		
c.	Let (A, R_1) and (B, R_2) be posets, on A X B, define the relation R by $(a, b) R (x, y)$ if aR_1x and bR y prove that R is a partial order	6	
and bR_2y prove that R is a partial order.			
Unit - V			
9 a.	Define a group, subgroup with example.	6	
b.	State and prove Lagrange's theorem.	7	
c.	Let G be the set of all non-zero real numbers and let $a * b = \frac{1}{2}ab$, show that (G,*) is an	7	
	Abelian groups.		
10 a.	Show that Z_5 is an integral domain.	6	
b.	we that the set Z with binary operations \oplus and defined by $x \oplus y = x + y - 1$ and		
	x y = x + y - xy is a commutative ring.	7	
c.	Write short notes on:		
	i) Encoding and Decoding of a message	7	
	ii) Hamming matrix and Generator matrix		

* * * * *