U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

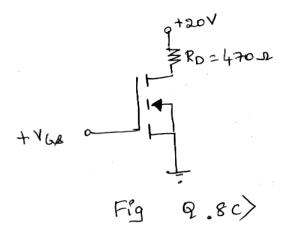
(An Autonomous Institution affiliated to VTU, Belgaum)

Third Semester, B.E. - Computer Science and Engineering Semester End Examination; Dec. - 2014

Electronic Circuits

Time: 3 hrs	Max. Marks: 100		
Note: i) Answer FIVE full questions, selecting ONE full question f ii) Assume suitable missing data if any.	from each Unit.		
Unit - I			
1. a. Explain the working of positive clipper and negative clipper.	1		
b. Explain step recovery diodes and tunnel diodes.	1		
2 a. Calculate the value of R_L and C for a stiff Clamper if the freque	ncy of input signal is 1kHz.		
b. A clamper circuit uses $R_L = 100~\text{k}\Omega$ and C =10 $\mu\text{F}.$ Calculate	the range of frequencies over		
which perfect clamping takes place.			
c. Explain:	1		
i) Varactor diodes ii) Laser diodes.	1		
Unit - II			
3 a. Draw the dc and ac equivalent circuit of a VDB amplifier using	i) π model ii) T Model.		
b. Derive an expression for re' (ac emitter resistance)	1		
4 a. For the VDB amplifier, draw the ac (Simplified ed			
$R_1 = 2.2 \text{ k}\Omega, R_2 = 560 \Omega, R_C = 1.5 \text{ k}\Omega, R_E = 470 \Omega, R_L = 10 \text{ k}\Omega,$	$V_{CC} = 12 \text{ V}$		
b. Explain Large signal operation and how distortion is reduced us	ing small signal operation.		
Unit - III			
5 a. Explain swamped amplifier. Mention its advantages.	1		
b. For a TSEB amplifier $R_B=10~k\Omega,~R_C=3.3~k\Omega,~R_E=8.2$	$k\Omega$, $R_L = 3.3 k\Omega$, $\beta = 100$,		
$V_{CC} = 10 \text{ V}$, $-V_{EE} = -10 \text{ V}$, $V_{in} = 5 \text{ mV}$. Calculate the voltage §	gain and output voltage across 1		
the load resistor			
6 a. What is meant by Darlington pair? Mention its features and app	lications.		
b. Explain complementary Darlington pair.			
c. Derive the expression for $Z_{out} = RE \ [re^1 + (R_G \ R_1 \ R_2)/\beta] $ where	e Z _{out} is output impedance of		
emitter follower.	1		
Unit - IV			
7 a. Explain the construction and working of n-channel D-MOSFET	·. 1		
-			
c. Explain Dual gate D-MOSFET.	:		

8 a. Draw and explain the working of E-MOSFET along with its drain characteristics and trans conductance curve.


10

b. Explain CMOS.

5

5

c. The E-MOSFET in the following circuit has $V_{GS(on)}$ = 2.5 V, $I_{D(on)}$ = 100 mA, $R_{DS(on)}$ = 10 Ω .Calculate the voltage across the MOSFET if V_{GS} = 2.5 V.

Unit - V

9 a. Explain briefly the different types of feedback amplifier.

12

b. What is meant by slew rate? For a VCVS amplifier determine close loop bandwidth and maximum undistorted peak value of output voltage if $f_{UGB} = 1$ MHz, $A_{v(u)} = 100$, $S_R = 0.5$ V/ μs

8

10 a Explain the working of an inverting Schmitt trigger and non inverting Schmitt trigger with neat circuit diagrams.

10

b. Explain Integrator circuit.

5

c. If the comparator has an open loop voltage gain of 106 dB. Calculate input voltage that results in positive saturation of output if supply voltages are \pm 15V.

5

* * * * *