P13CS32	Page No 1		
	U.S.N		
P.E.S. College of En	gineering, Mandya - 571 401		
	ution affiliated to VTU, Belgaum)		
Third Semester, B.E Computer Science and Engineering Semester End Examination; Dec 2014			
Digital Log	gic Design		
Time: 3 hrs	Max. Marks: 100		
<i>Note</i> : i) Answer FIVE full questions, selecting C ii) Assume suitably missing data if any. U r	nit - I		
1. a. What are universal gates? Realize the foll	owing functions using minimum No. of any		
universal gates.		0	
i) $a\overline{x} + \overline{a}x + axy.(\overline{a}+\overline{x}+\overline{y})$		8	
ii) ab+ab			
b. Simplify the following functions using $K - ma$	ıp.		
i) $F(a,b,c,d) = \sum m(1,2,8,9,13) + d(0,5,10)$)	6	
ii) $F(w,x,y,z) = \pi m (0,2,5,7,8,14) + d(4,6,1)$	0,12)		
c. Simplify the following function using two var	iables K – map.		
$F(a,b,c) = \sum m(0,2,4,6,7)$		6	
[Note : take 'C' inside the map) and realize us	ing logic gates.		
2 a. What is the advantage of Quine-Mc Clusky m	ethod over K map?		
Simplify the following function using Quine –	Mc Clusky method.	10	
$F(a,b,c,d) = \sum m(3,6,7,11,12,13,14,15)$			
b. Design a 4 input 1 output logic circuit that out	puts		
i) '1 when no. of '1's in the input is greater that	an no. of '0's.	10	
ii) '0' when no. of '1's is less than no. of '0's.		10	
iii) don't care other wise.			
Unit - II			
3 a. Design seven segments Decoder circuit.		10	
b. Design BCD to Excess-3 code converts circuit		10	
4 a. Implement full adder using 4 : 1 multiplexer.		6	
b. What is comparator? Design 2 bit comparator	circuit.	8	
c. Design 2 bit fast adder.		6	

Contd...2

P13CS32

Unit - III

5 a.	Explain J.K. master slave Flip-Flop.	7	
b.	Derive characteristic equations for SR, K and T flip flop.	9	
c.	How do you design the following,		
	i) D Flip-flop using SR Flip Flop.	4	
	ii) T Flip – Flop using JK Flip Flop.		
6 a.	Explain the design of following shift registers:		
	i) Serial in serial out.	10	
	ii) Parallel in Parallel out.		
b.	Design sequence detector and sequence generator circuit using shift register.	10	
Unit - IV			
7 a.	Design a synchronous 3bit counter T-Flip Flop that has the following containing sequence	10	
	0, 2, 4, 6, 7, 0.	10	
b.	Explain successive approximation A/D converter with a neat diagram.	10	
8 a.	Design 3 bit asynchronous up counter using JK flip flops.	10	
b.	Explain Dual slope A/D converter circuit.	10	
Unit - V			
9 a.	Write VHDL Code for full adder and Full subtractor.	10	
b.	Briefly explain TTL parameters.	10	
10 a.	Write VHDL code for 2 : 4 decoder and 4 : 1 multiplexer.	10	
b.	Explain CMOS NOT, NOR and NAND circuits. How CMOS differs from TTL?	10	

* * * * *