\square

P.E.S. College of Engineering, Mandya - 571401
 (An Autonomous Institution affiliated to VTU, Belgaum) Third Semester, B.E. - Computer Science and Engineering Logic Design

Time: 3 hrs
Max. Marks: 100
Note: Answer any FIVE full questions, selecting at least TWO full questions from each part.
PART - A
1.a What are universal gates? Realize basic gates using any one of the universal gate.
b. Convert the given expression in standard SOP forms;
i) $f(A, B, C)=A+A B+C B$
ii) $f(P, Q, R)=P Q+R+P R$
c. Simplify the following Boolean equation using Boolean laws.

$$
Y=\bar{A} \bar{B} \bar{C}+\bar{A} B \bar{C}+A \bar{B} \bar{C}+\bar{A} \bar{B} C+A B \bar{C}
$$

2.a Reduce the following function using K-map technique and implement using gates.
i) $f(P, Q, R, S)=\sum m(0,1,4,8,9,10)+d(2,11)$
ii) $f(A, B, C, D)=\Pi M(0,2,4,10,11,14,15)$
b. Simplify the following Boolean function by using QM method
$F(A, B, C, D)=\sum m(0,2,3,6,7,8,10,12,13)$
3.a Implement the following Boolean function using 8×1 MUX
$F(A, B, C, D)=\sum m(0,1,2,4,6,9,12,14)$
b. What is carry look ahead adder? Design 2-bit carry look ahead adder.
4.a Give the characteristic equation, state diagram and excitation table of SR, JK and T flip flop 9
b. Convert SR flip flop to JK flip flop 6
c. Explain Master slave JK flip flop.

PART - B

5.a Explain serial in serial out and parallel in serial out register with a neat Logic diagram 10
b. Explain the working of Johnson counter and Ring counter
6.a Design a synchronous mod-3 counter with the following sequence using clocked JK flip flops count sequence $\rightarrow 0,1,2,0,1,2$

\qquadb. Draw and explain the working of 4 bit up/down synchronous counter.10
7.a Explain state reduction technique with a neat diagram. 10
b. Distinguish between Mealy model and Moore model. 10
8.a Explain dual slope A/D conversion with a neat diagram. 10
b. Explain R-2R ladder D to A conversion. 10

