U.S.N

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Third Semester, B.E. - Computer Science and Engineering Logic Design

Time: 3 hrs Max. Marks: 100

Note: Answer any FIVE full questions, selecting at least TWO full questions from each part.

PART - A

1.a	What are universal gates? Realize basic gates using any one of the universal gate.	8
b.	Convert the given expression in standard SOP forms;	0
	$i) f(A, B, C) = A + AB + CB \qquad ii) f(P, Q, R) = PQ + R + PR$	8
c.	Simplify the following Boolean equation using Boolean laws.	4
	$Y = \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} C + A \overline{B} \overline{C}$	
2.a	Reduce the following function using K-map technique and implement using gates.	
	$i) f(P,Q,R,S) = \sum m(0,1,4,8,9,10) + d(2,11)$	10
	$ii) f(A, B, C, D) = \Pi M(0, 2, 4, 10, 11, 14, 15)$	
b.	Simplify the following Boolean function by using QM method	10
	$F(A, B, C, D) = \sum m(0, 2, 3, 6, 7, 8, 10, 12, 13)$	
3.a	Implement the following Boolean function using 8x1 MUX	1.6
	$F(A,B,C,D) = \sum m(0,1,2,4,6,9,12,14)$	10
b.	What is carry look ahead adder? Design 2-bit carry look ahead adder.	10
4.a	Give the characteristic equation, state diagram and excitation table of SR, JK and T flip flop	9
b.	Convert SR flip flop to JK flip flop	6
c.	Explain Master slave JK flip flop.	5
	PART - B	
5.a	Explain serial in serial out and parallel in serial out register with a neat Logic diagram	10
b.	Explain the working of Johnson counter and Ring counter	10
6.a	Design a synchronous mod-3 counter with the following sequence using clocked JK flip flops	10
	count sequence $\rightarrow 0, 1, 2, 0, 1, 2 \dots$	10
b.	Draw and explain the working of 4 bit up/down synchronous counter.	10
7.a	Explain state reduction technique with a neat diagram.	10
b.	Distinguish between Mealy model and Moore model.	10
8.a	Explain dual slope A/D conversion with a neat diagram.	10
b.	Explain R-2R ladder D to A conversion.	10