P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belgaum)
Third Semester, B.E. - Computer Science and Engineering
Semester End Examination; Dec. - 2015
Digital Logic Design
Time: 3 hrs Max. Marks: 100
Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

1 a. Realize $y=A B+\bar{C}$ using only NOR gate and write the truth table.
b. Simplify the following Boolean equation using K - map :
i) $\quad F(A, B, C, D)=\sum m(1,2,3,6,8,9,10,12,13,14)$
ii) $\quad F(A, B, C)=(\bar{A}+\bar{B}+\bar{C})(\bar{A}+B+\bar{C})(A+B+\bar{C})$.
c. Simply the function using K - map,
$\mathrm{F}(a, b, c, d)=\Sigma \mathrm{m}(2,3,4,5,13,15)+\mathrm{d}(8,9,10,11)$,
Using ' d ' as don't care term. Realize a AND - OR gate network using minimum number of gates.
2 a. Explain the principle of duality with example.
b. Get the simplified SOP expression of, $\mathrm{Y}=\mathrm{F}(w, x, y, z)=\Sigma \mathrm{m}(1,2,8,9,10,12,13,14)$
Using Quine - McClusky method.
c. The input to a combinational circuit is a 4 bit binary number. Design the logic circuit with minimum gates for the following condition,
i) Output $\mathrm{g}_{1}=1$, if the input binary number is 5 or less than 5
ii) Output $\mathrm{g}_{2}=1$, if the input binary number is 9 or more than 9 .

UNIT - II
3 a. Implement the following Boolean function using (i) 16:1 mux and ii) 8:1 mux
$F(P, Q, R, S)=\bar{P} Q \bar{S}+P R S+\bar{Q} R S+\bar{P} \bar{R} S$
b. A combinational circuit is defined by the functions,
$\mathrm{F}_{1}=\Sigma \mathrm{m}(3,5,7) \quad \mathrm{F}_{2}=\mathrm{m}(4,5,7)$,
Implement the circuit with a PLA having 3 inputs, 3 product terms and 2 outputs.
c. Design BCD to EXCESS - 3 code converter.

4 a. What is fast adder? Design 2 bit fast adder using suitable equations. 6
b. Design an octal to binary encoder. 4
c. Implement the following Boolean function using PAL :
$\mathrm{w}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,2,6,7,8,9,12,13)$
$\mathrm{x}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,2,6,7,8,9,12,13,14)$
$\mathrm{y}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(2,3,8,9,10,12,13)$
$\mathrm{z}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(1,3,4,6,9,12,14)$.

UNIT - III

5 a. For JK and T flip flop give,
i) State transition diagram
ii) Characteristic equations
iii) Exitation table.
b. A Binary number 10111011 is serially shifted (right) into a eight bit parallel out shift register that has an initial content by 10101010
i) What are the Q outputs after 2 clock pulses
ii) After 4 clock pulses
iii) After 8 clock pulses.
c. Draw the circuit and explain the working of a 3 bit Johnson's counter.

6 a. Convert SR to JK flip flop.
b. What is race around condition? Explain how it is eliminated using JK master slave flip flop. 6
c. Explain with suitable circuits how shift register can be used as a sequence detector.

UNIT - IV
7 a. Design Mod - 6 synchronous up counter using JK flip flops.10
b. Design a 2 bit down counter using D flip flop. 6
c. With a neat block diagram explain successive approximation technique. 4

8 a. Design a self correcting Mod - 6 counter in which all the unused states leads to state " 000 ". 7
b. Design a counter to generate the following sequence using D flip flop, 8 0-3-5-4-2-6-1-7-0.
c. Explain dual slope A/D converter with a neat diagram.

UNIT - V

9 a. Write the VHDL code for the following :
i) $4: 1$ multiplexer
ii)Johnson counter
b. List and explain CMOS characteristics.

10a. Explain 2 input NAND gate TTL with a neat diagram. 6
b. Mention advantages and disadvantages of CMOS logic over TTL. 6
c. Give the VHDL code for the following :
i) Mod - 8 up counter
ii) $2: 4$ priority encode.

