U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Third Semester, B.E. -Computer Science and Engineering Semester End Examination, Dec - 2015 Digital Logic Design

Time: 3 hrs Max. Marks: 100

Note: Answer any **FIVE** full questions, selecting **ONE** full question from each **unit**.

UNIT - I

1 a. Simplify the following Boolean expression using Boolean Algebra, and implement the logic using NOR gates only

 $(x+xy)(\bar{x}+y)+yz$

b. Simplify the following expressions using K-map.

i) $F(w, x, y, z) = \sum m(0,1,3,7,8,12) + d(4,5,10,13,14)$

8

6

- ii) $F(A, B, C, D) = \Pi m(2, 3, 10, 11, 12, 13, 14, 15) + dc(0, 1, 6, 7)$
- c. Prove that A + AB = A. Find dual of the relation and also prove it using duality Theorem.

6

12

2 a. Find prime implicants of the Boolean expression using Quine-McClusky method also find essential prime implicants

 $F(A, B, C, D) = \Sigma m(1, 3, 4, 5, 7, 8, 11, 15)$

b. Using VEM method simplify the following

 $F(A, B, C, D) = \sum m(0, 4, 8, 11, 12, 14)$

8

- i) Use 'A' as map entered variable
- ii) Use 'D' as map entered variable.

UNIT-II

3 a. Design full adder and full subtractor using 4×1 multiplexer.

8 5

b. Write a note on Read only memory.

c. Implement the following functions using PLA

 $F_1(A,B.C) = \Sigma m(0,2,7)$

7

 $F_2(A,B.C) = \Sigma m(1,3,6)$

4 a. Explain 1 bit magnitude comparator circuit with example.

10

b. Explain the design of 2-bit Fast adder.

10

UNIT - III

5	a.	Derive characteristic equations for				
		(i) SR Flip Flop				
		(ii) D Flip flop	8			
		(iii) JK Flip Flop				
		(iv) T Flip flop				
	b.	What is the difference between pulse triggered flip-flop and edge triggered flip flop.	2			
	c.	c. Explain the Design of JK master slave Flip flop.				
6	a.	Design the following counters using Shift register				
		(i) Johnson counter	12			
		(ii) Ring counter				
	b.	Explain the design of serial in parallel out shift register.	8			
		UNIT - IV				
7	a.	Design mod-6 synchronous counter using T flip-flop.	10			
	b. Design self correcting mod 7 synchronous counter using D flip-flops (All unused status must					
		lead to state 0).	10			
8	a.	a. Explain the design of 4-bit D to A counter with a diagram.				
	b.	With a diagram explain the working of successive approximation ADC.	10			
		UNIT - V				
9	a.	Write the VHDL code for the following:				
		(i) 4 x 1 MUX	6			
		(ii) 8 x 3 ENCODER	6			
		(iii) FULL ADDER				
	b.	With suitable diagram explain the operation of 2 input TTL NAND gate with totempole	10			
		output.	10			
	c.	Explain the working of CMOS inverter.	4			
10	a.	Explain the semiconductor switches used in Digital integrated circuits.	12			
	b.	Write VHDL code for the following:				
		i) 3 x 8 Decoder	8			
		ii) 'D' Flip Flop				