

P.E.S. College of Engineering, Mandya - 571401

 (An Autonomous Institution affiliated to VTU, Belgaum) Third Semester, B.E. - Computer Science and Engineering Semester End Examination; Dec - 2016/Jan - 2017 Logic DesignTime: 3 hrs
Max. Marks: 100
Note: Answer FIVE full questions, selecting $\boldsymbol{O N E}$ full question from each unit. UNIT - I

1 a. Define Universal gates. Implement Basic gates using any one Universal gate.
b. List and explain TTL characteristics.
c. Simplify the following Boolean function using K-map and draw the equivalent logic circuit,
$f(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Pi \mathrm{M}(0,1,2,3,4,6,10,11,13)$.
2 a. Describe CMOS characteristics.
b. Get the simplified expression of,
$\mathrm{Y}=\mathrm{F}(\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S})=\Sigma \mathrm{m}(0,4,8,10,11,12,14,15)$ using Quine Mc-Clusky method.
c. Design BCD to excess-3 code converter.

UNIT - II

3 a. Design Full adder and Full subtractor using suitable multiplexer.
b. Design 2 bit Fast adder and justify you design.
c. Write a VHDL code for 1 bit magnitude comparator.

4 a. Design programmable logic array for the following Boolean functions:
$\mathrm{F}_{1}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma \mathrm{m}(0,3,5,7)$
$\mathrm{F}_{2}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma \mathrm{m}(0,4,6,7)$
$\mathrm{F}_{3}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma \mathrm{m}(0,4,6)$.
b. Explain the working of 8 bit binary adder subtractor circuit.
c. Implement the following Boolean function using 8:1 MUX,
$\mathrm{F}(\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=\Sigma \mathrm{m}(0,3,4,6,10,14,15)+\mathrm{d}(2,5,8,11)$.

UNIT - III

5 a . Differentiate between positive edge triggered and negative edge triggered clock pulses. 4
b. Convert JK Flip-Flop to SR Flip-Flop. 8
c. List the types of registers and explain with neat logic diagram. 8

6 a. Describe Master-Slave JK Flip-Flop. 8
b. Convert D Flip-Flop to SR Flip-Flop. 8
c. List the Applications of shift registers and explain any two. 4

UNIT - IV

7 a. Design 2 bit synchronous down counter using JK Flip-Flop.
b. Design a sequential circuit using Moore model for a given sequential input of '011'. 12
c. Differentiate between synchronous counter and asynchronous counter. 2

8 a. State the rules for state assignment. 10
b. Design synchronous Mod-5 counter using clocked JK Flip-Flop. 10

UNIT - V

9 a. Explain D/A accuracy and resolution. 6
b. Describe single Ramp-A/D converter. 10
c. Find the binary equivalent weight of each bit in a 4 bit system. 4

10 a. Explain successive approximation weight of each bit in a 4 bit system. 10
b. Explain 2 bit simultaneous A/D converter. 10

