P08	Page No 1	
	U.S.N	
Ti	P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Third Semester, B.E Computer Science and Engineering Semester End Examination; Dec - 2016/Jan - 2017 Logic Design me: 3 hrs Max. Marks: 100	
Not	e: Answer FIVE full questions, selecting ONE full question from each unit.	
	UNIT - I	
1 a.	Define Universal gates. Implement Basic gates using any one Universal gate.	7
b.	List and explain TTL characteristics.	6
c.	Simplify the following Boolean function using K-map and draw the equivalent logic	
	circuit,	7
	$f(A, B, C, D) = \Pi M(0, 1, 2, 3, 4, 6, 10, 11, 13).$	
2 a.	Describe CMOS characteristics.	6
b.	Get the simplified expression of,	6
	$Y = F(P, Q, R, S) = \Sigma m(0, 4, 8, 10, 11, 12, 14, 15)$ using Quine Mc-Clusky method.	
c.	Design BCD to excess-3 code converter.	8
0	UNIT - II	10
3 a.	Design Full adder and Full subtractor using suitable multiplexer.	10
b.	Design 2 bit Fast adder and justify you design.	6
с.	Write a VHDL code for 1 bit magnitude comparator.	4
4 a.	Design programmable logic array for the following Boolean functions: $F_1(A, B, C) = \Sigma m(0, 3, 5, 7)$	
	$F_1(A, B, C) = \Sigma m(0, 4, 6, 7)$ $F_2(A, B, C) = \Sigma m(0, 4, 6, 7)$	6
h	$F_3(A, B, C) = \Sigma m(0, 4, 6).$	0
b. с.	Explain the working of 8 bit binary adder subtractor circuit. Implement the following Boolean function using 8:1 MUX,	8
C.	$F(W, X, Y, Z) = \Sigma m(0, 3, 4, 6, 10, 14, 15) + d(2, 5, 8, 11).$	6
	UNIT - III	
5 a.	Differentiate between positive edge triggered and negative edge triggered clock pulses.	4
ь.	Convert JK Flip-Flop to SR Flip-Flop.	8
с.	List the types of registers and explain with neat logic diagram.	8
6 a.	Describe Master-Slave JK Flip-Flop.	8
b.	Convert D Flip-Flop to SR Flip-Flop.	8
c.	List the Applications of shift registers and explain any two.	4

UNIT - IV

Design 2 bit synchronous down counter using JK Flip-Flop.	6
Design a sequential circuit using Moore model for a given sequential input of '011'.	12
Differentiate between synchronous counter and asynchronous counter.	2
State the rules for state assignment.	10
Design synchronous Mod-5 counter using clocked JK Flip-Flop.	10
UNIT - V	
Explain D/A accuracy and resolution.	6
Describe single Ramp-A/D converter.	10
Find the binary equivalent weight of each bit in a 4 bit system.	4
Explain successive approximation weight of each bit in a 4 bit system.	10
Explain 2 bit simultaneous A/D converter.	10
	Design a sequential circuit using Moore model for a given sequential input of '011'. Differentiate between synchronous counter and asynchronous counter. State the rules for state assignment. Design synchronous Mod-5 counter using clocked JK Flip-Flop. UNIT - V Explain D/A accuracy and resolution. Describe single Ramp-A/D converter. Find the binary equivalent weight of each bit in a 4 bit system. Explain successive approximation weight of each bit in a 4 bit system.

* * *