U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Third Semester, B.E. - Computer Science and Engineering Semester End Examination; Dec - 2016/Jan - 2017 Digital Logic Design

Time: 3 hrs Max. Marks: 100

Note: Answer *FIVE* full questions, selecting *ONE* full question from each unit. UNIT - I 1 a. Explain with examples; i) Positive and Negative logic 10 ii) NOR as universal gate iii) NAND as universal gate. b. Design a minimum hardware circuit for the Boolean expression using QM technique, 10 $f(w, x, y, z) = \sum m(0, 5, 6, 7, 9, 10, 13, 14, 15).$ 2 a. Explain with examples; i) De-Morgan's theorem 10 ii) Principle of Duality iii) Consensuses theorem. b. Consider a circuit with 4 variables input A, B, C, D and one output 'Z'. Output Z = 1 if B or C is high, but not both. And also Z = 1, if all input is same. Design a minimum hardware 10 circuit using K-map. UNIT - II 3 a. Mention the building blocks of arithmetic circuits explain the same with examples. 10 b. Implement the following expression using 4:1 MUX and 8:1 MUX, 10 $f(A, B, C, D) = \Sigma m(0, 1, 5, 6, 7, 8, 9, 10, 15).$ 4 a. Explain: i) 4:1 MUX 10 ii) 2-bit magnitude comparator. b. Implement the following using 3:8 decoder, $f_1(A, B, C) = \Sigma m(1, 3, 4, 5)$ 5 $f_2(A, B, C) = \Sigma m (0, 2, 5, 6, 7)$ $f_3(A, B, C) = \Sigma m(1, 2, 3, 6)$ c. Design a 6-bit odd parity generator. 5

UNIT - III

5 a.	Differentiate between PLA and PAL.	5							
b.	Explain edge triggered SR Flip-Flop.	5							
c.	c. Giving characteristic equations, state diagram and excitation fable of JK and D Flip-Flop, convert D Flip-Flop to JK Flip-Flop.								
6 a.	Explain JK Flip-Flop.	5							
b.	Implement the following using PLA,								
	$f_I(A, B, C) = \Sigma m (0, 2, 3, 7)$	5							
	$f_2(A, B, C) = \sum m(1, 2, 4, 5)$								
	$f_3(A, B, C) = \Sigma m(1, 3, 5, 6, 7)$								
c.	Convert SR Flip-Flop to T Flip-Flop, giving characteristic equation, excitation table and	table and							
	state diagram of SR Flip-Flop and T Flip-Flop.								
	UNIT - IV								
7 a.	Giving circuit diagram, truth table and wave diagram, explain SIPO shift register (4-bit).	10							
b.	. Design a counter using JK flip flop that counts as, $2 \rightarrow 1 \rightarrow 0 \rightarrow 3 \rightarrow 5 \rightarrow 6 \rightarrow 4 \rightarrow$								
8 a.	Briefly explain the different applications of shift register.								
b.	Using T Flip-Flops design a synchronous counter that counts in the following sequence,	10							
	$0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 0 \dots$	10							
UNIT - V									
9 a.	Briefly explain:								
	i) Binary ladder	10							
	ii) A/D counter method conversion.								
b.	Write Verilog/VHDL code to implement 3:8 decoder.	5							
c.	Write Verilog/VHDL code to implement Johnson counter.	5							
10 a.	Explain the different A/D techniques.	10							
b.	Write Verilog / VHDL code to implement 8:1 MUX.	5							
c.	Write Verilog / VHDL code to implement 3-bit up counter and down counter.	5							