P	P13CS42 Page No 1	
	U.S.N	
÷	P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Fourth Semester, B.E Computer Science and Engineering Semester End Examination; June/July - 2015 Graph Theory and Combinatorics	
	Time: 3 hrs Max. Marks: 100	
1	<i>lote: i)</i> Answer FIVE full questions, selecting ONE full question from each Unit . <i>ii)</i> Assume suitable missing data if any.	
	UNIT - I	
1. a	. Define graph isomorphism. Give an example of isomorphic graphs.	
b	. Let G be an undirected graph with no isolated vertices. Then prove that G has an Euler circuit	1
	iff G is connected and every vertex in G has even degree.	
c	Write a short notes on Konigsberg bridge problem.	
2 a	. Let D be a digraph with an odd number of vertices. Prove that if each vertex of D has an odd –	
	degree then D has an odd number of vertices with odd in – degrees.	
b	. If $G(V, E)$ is a simple graph, prove that	
	$2 E \le V ^2 - V $	
c	. How many vertices and how many edges are there in the complete bipartite graph $K_{4,7}$ and	
	K _{7,11} ?	
d	. Show that if a bipartite graph $G(V_1 V_2, E)$ is regular, then $ V_1 = V_2 $.	
	UNIT – II	
	Show that the complete graph K_5 is a non planar graph.	
b	. Prove that a connected planar graph G with n vertices and m edges has exactly $m - n + 2$	1
	regions in all of its diagrams.	
	. Write the five steps of elementary reduction method for detection of planarity.	
4. a	Prove that the sum of the degrees of the regions of a planar graph G o is equal to twice the	
	number of edges in G.	
	Prove that a graph G is 2 - chromatic if an only if it is a non – null bipartite graph.	
c	Prove the following :	
	i) for any graph G, the constant term in $P(G, \lambda)$ is zero	
	ii) for any graph G(V, E) with $ E \ge 1$, the sum of the coefficients in P(G, λ)is zero	
d	Find the chromatic number and the chromatic polynomial for the graph $K_{1,n}$.	

Contd...2

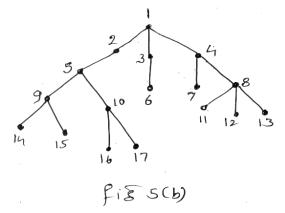
P13CS42

5

5

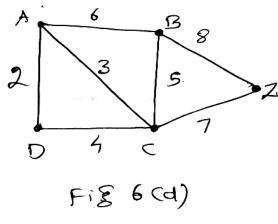
UNIT - III

- 5. a. If a tree T has four vertices of degree 2, one vertex of degree 3, two vertices of degree 4 and one vertex of degree 5 find the number of leaves in T.
 - b. Write the preorder and post order traversal of the tree shown below.



c. Apply	merge sort to the list	5	
-1, 7, 4	4, 11, 5, -8, 15, -3, -2, 6, 10, 3	5	
d. Prove	that a graph is connected if and only if it has a spanning tree.	5	
6. a. Write	the steps of DFS algorithm.	5	
b. Constr	ruct an optimal prefix code for the symbols a, o, q, u, y, z that occur with frequencies	5	
20, 28	e, 4, 17, 12, 7 respectively.	5	
c. Write	Kruskal's algorithm.	5	

d. For the network shown below, determine the maximum flow between A & Z by identifying a cut – set of minimum capacity.



UNIT - IV

7. a. i) Find the number of binary sequences of length n.

ii) Find the number of binary sequences of length n that contain an even number of 1's.

b. How many positive integers n can we form using the digits 3, 4, 4, 5, 5, 6, 7 if we want n to exceed 5,000,000.

5

5

P13CS42

	0	
c.	Certain question paper contains three parts A, B, C with four questions in Part-A, five	
	questions in Part-B and six questions in part-C It is required to answer seven questions	5
	selecting at least two questions from each part. In how many different ways can a student	5
	select his seven questions?	
d.	Find the term which contains x^{11} and y^4 in the expansion of $(2x^3-3xy^2+z^2)^6$.	5
8. a.	Determine the number of positive integers n such that $1 \le n \le 100$ and n is not divisible by 2,	5
	3 or 5.	5
b.	In how many ways can the integers 1, 2, 3, 10 be arranged in a line so that no even integer	5
	is in its natural place.	5
c.	Find the rook polynomial for the 3 X 3 board by using the expansion formula.	5
d.	Using generating function, find the number of partitions of $n = 6$.	5
	UNIT - V	
9 a.	Suppose there are $n \ge 2$ persons at a party and that each of these persons shakes hands with all	5
	of the other persons present. Using a recurrence relation find the number of hand shakes.	3
b.	Solve the recurrence,	5
	$F_{n+2}=F_{n+1}+F_n,\ n\ \geq 0,\ F_0=0,\ F_1=1.$	5
c.	Solve the recurrence	5
	$a_n + a_{n-1} - 8a_{n-2} - 12a_{n-3} = 0, n \ge 3$ with $a_0 = 1, a_1 = 5, a_2 = 1$	5
d.	Solve the recurrence	5
	$a_n + 4a_{n-1} + 4a_{n-2} = 8$ for $n \ge 2$ and $a_0 = 1$, $a_1 = 2$	5
10a.	Solve the recurrence relation	10
	$a_n + 2a_{n-1} - 3a_{n-2} = 4n^2 - 5$ for $n \ge 2$.	10
b.	Using the generating function method, solve the recurrence	10
	$a_n = 3a_{n-1} = n, \ n \ge 1.$	10

* * * * *