

P.E.S. College of Engineering, Mandya - 571401
 (An Autonomous Institution affiliated to VTU, Belgaum) Fourth Semester, B.E. - Computer Science and Engineering Make - up Examination; July - 2016
 Graph Theory and Combinatorics

Time: 3 hrs
Max. Marks: 100
Note: i) Answer FIVE full questions, selecting ONE full question from each unit.
ii) Assume suitable missing data if any.

UNIT - I
1 a. Define the following :
i) Finite Graph
ii) Infinite Graph
iii) Subgraph
iv) Complement of a graph
v) Graph Isomorphism.
b. Explain Konigsberg bridge problem. Also explain why it has no solution?
c. Describe the TSP problem. How it is connected with the Hamiltonian circuits?

2 a. Define Euler and Hamiltonian graph with an example for each.
b. Prove that in a complete graph with n vertices there are $(n-1) / 2$ edge disjoint Hamiltonian Circuits, if n is an odd number ≥ 3.
c. If $\mathrm{G}=\mathrm{G}(\mathrm{V}, \mathrm{E})$ is a simple graph, prove that $2|E| \leq|V|^{2}-|V|$.

UNIT - II

3 a. Show that the complete graph K_{5} is a non-planar graph.
b. Show that a connected planar graph G with n vertices and m edges has exactly $m-n+2$ regions in all of its diagrams.
c. Let G be a 4 - regular connected planar graph having 16 edges. Find the number of regions of G.

4 a. Let G be a connected planar graph, with n vertices, m edges and r regions and let its dual G^{*} have n^{*} vertices, m^{*} edges and r^{*} regions. Then show that $n^{*}=r, m^{*}=m, \mathrm{r}^{*}=n$.
b. Find the chromatic number and the chromatic polynomial for the graph $\mathrm{K}_{1, \mathrm{n}}$.
c. Let $G=G(V, E)$ and $G^{\prime}=G^{\prime}\left(V^{\prime}, E^{\prime}\right)$ be two graphs and $f: G \rightarrow G^{\prime}$ be an isomorphism, prove the following :
i) $\mathrm{f}^{-1}: \mathrm{G}^{\prime} \rightarrow \mathrm{G}$ is also an isomorphism
ii) For any vertex v in $\mathrm{G}, \operatorname{deg}(v)$ in $\mathrm{G}=\operatorname{deg}(\mathrm{f}(v))$ in G^{\prime}.

UNIT - III

5 a . Prove that a tree with n vertices has n - 1 edges.
b. Prove that a tree with two or more vertices contains at least two leaves (Pendant vertices).
c. Prove that a graph with n vertices, $n-1$ edges and no cycles is connected.

6 a . Using the merge-sort method sort the list $7,3,8,4,5,10,6,2,9$.
b. What is a spanning tree? Find all the spanning trees of the graph shown below,

c. Write the steps of Kruskal's algorithm.
d. Find the maximum flow possible between the vertices P and S in the network given below :

d. Using generating function, find the number of partitions of $n=6$. exceed $5,000,000$?
c. A certain question paper contains three parts A, B, C with four questions in Part A, Five questions in Part B and six questions in Part C . It is required to answer seven questions selecting atleast two questions from each part.
In how many different ways can a student select his seven questions for answering?
d. Among the students in a hostel, 12 students study mathematics (A), 20 study physics (B), 20 study chemistry (C), and 8 study biology (D). There are 5 students for A and $B, 7$ students for A and C, 4 students for A and $\mathrm{D}, 16$ students for B and $\mathrm{C}, 4$ students for B and D , and 3 students for C and D . There are 3 students for A, B, and $\mathrm{C}, 2$ for A, B and $\mathrm{D}, 2$ for B, C and D, 3 for A, C and D. Finally there are 2 who study all of these subjects. Furthermore there are 71 students who do not study any of these subjects. Find the total number of students in the hostel.

8 a. Find the number of dearrangements of $1,2,3,4$. Also write all the dearrangements.
b. Find the rook polynomial for the 2×2 board for using the expansion formula.
c. Find a generating function for each of the following sequences :
i) $1^{2}, 2^{2}, 3^{2} \ldots$.
ii) $0^{3}, 1^{3}, 2^{3}, 3^{3} \ldots \ldots$

UNIT - V

9 a. The number of virus affected files in a system is 1000 (to start with) and this increases 250% every two hours. Use a recurrence relation to determine the number of virus affected files in the system after one day.
b. Solve the recurrence relation,
$a_{n}+a_{n-1}-6 a_{n-2}=0$ for $n \geq 2$
Given that $a_{0}=-1$ and $a_{1}=8$
c. Solve the recurrence relation $2 a_{n+3}=a_{n+2}+2 a_{n+1}-a_{n}$, for $n \geq 0$ with $a_{0}=0, a_{1}=1$ and $a_{2}=2$.
d. Solve the recurrence relation $a_{n}+4 a_{n-1}+4 a_{n-2}=8$ for $n \geq 2 \& a_{0}=1, a_{1}=2$.

10 a. Solve the recurrence relation $a_{n+2}-2 a_{n+1}+a_{n}=2^{n}, n \geq 0 \quad \& \quad a_{0}=1, a_{l}=2$, by the method of generating function.
b. Suppose there are $n \geq 2$ persons at a party and that each of these persons shake hands with all of the other persons present. Using a recurrence relation, find the number of hand shakes.
c. Solve the recurrence relation,
$a_{n}=3 a_{n-1}-2 a_{n-2}$ for $n \geq 2$ given that $a_{1}=5$ and $a_{2}=3$.

