P1	3CS42 Page No 1			
	U.S.N			
	P.E.S. College of Engineering, Mandya - 571 401			
(An Autonomous Institution affiliated to VTU, Belgaum)				
	Fourth Semester, B.E Computer Science and Engineering Make - up Examination; July - 2016			
	Graph Theory and Combinatorics			
Ti	ime: 3 hrs Max. Marks: 100			
No	<i>ite: i) Answer FIVE full questions, selecting ONE full question from each unit.</i> <i>ii) Assume suitable missing data if any.</i>			
UNIT - I				
1 a.	Define the following :			
	i) Finite Graph ii) Infinite Graph iii) Subgraph	7		
	iv) Complement of a graph v) Graph Isomorphism.			
b.	Explain Konigsberg bridge problem. Also explain why it has no solution?	8		
c.	Describe the TSP problem. How it is connected with the Hamiltonian circuits?	5		
2 a.	Define Euler and Hamiltonian graph with an example for each.	6		
b.	Prove that in a complete graph with n vertices there are $(n-1)/2$ edge disjoint Hamiltonian	10		
	Circuits, if <i>n</i> is an odd number ≥ 3 .	10		
с.	If G = G (V, E) is a simple graph, prove that $2 E \le V ^2 - V $.	4		
	UNIT - II			
3 a.	Show that the complete graph K_5 is a non-planar graph.	5		
b.	Show that a connected planar graph G with n vertices and m edges has exactly $m-n+2$ regions	10		
	in all of its diagrams.	10		
с.	Let G be a 4- regular connected planar graph having 16 edges. Find the number of regions of	5		
	G.	5		
4 a.	Let G be a connected planar graph, with n vertices, m edges and r regions and let its dual G*	5		
	have n^* vertices, m^* edges and r^* regions. Then show that $n^* = r$, $m^* = m$, $r^* = n$.	U		
b.	Find the chromatic number and the chromatic polynomial for the graph $K_{1,n}$.	5		
c.	Let $G = G(V, E)$ and $G' = G'(V', E')$ be two graphs and $f:G \rightarrow G'$ be an isomorphism, prove the			
	following :	10		
	i) $f^1:G' \rightarrow G$ is also an isomorphism	-		
	ii) For any vertex v in G, $deg(v)$ in G = deg (f(v)) in G'.			
UNIT - III				
5 a.	Prove that a tree with n vertices has n - l edges.	8		
b.	Prove that a tree with two or more vertices contains at least two leaves (Pendant vertices).	6		
c.	Prove that a graph with <i>n</i> vertices, <i>n</i> -1 edges and no cycles is connected.	6		

Contd.....2

- 6 a. Using the merge-sort method sort the list 7, 3, 8, 4, 5, 10, 6, 2, 9.
 - What is a spanning tree? Find all the spanning trees of the graph shown below, b.

- Write the steps of Kruskal's algorithm. c.
- Find the maximum flow possible between the vertices P and S in the network given below : d.

UNIT - IV

7 a. Find the number of 3-digit even numbers with no repeated digits. 5 How many positive integers n can we form using the digits 3, 4, 4, 5, 5, 6, 7, if we want n to 5 b. exceed 5,000,000? A certain question paper contains three parts A, B, C with four questions in Part A, Five c. questions in Part B and six questions in Part C. It is required to answer seven questions 5 selecting atleast two questions from each part.

In how many different ways can a student select his seven questions for answering?

d. Among the students in a hostel, 12 students study mathematics (A), 20 study physics (B), 20 study chemistry (C), and 8 study biology (D). There are 5 students for A and B, 7 students for A and C, 4 students for A and D, 16 students for B and C, 4 students for B and D, and 3 students for C and D. There are 3 students for A, B, and C, 2 for A, B and D, 2 for B, C and 5 D, 3 for A, C and D. Finally there are 2 who study all of these subjects. Furthermore there are 71 students who do not study any of these subjects. Find the total number of students in the hostel.

8 a.	Find the number of dearrangements of 1, 2, 3, 4. Also write all the dearrangements.	5
b.	Find the rook polynomial for the 2 x 2 board for using the expansion formula.	5
c.	Find a generating function for each of the following sequences :	
	i) 1 ² , 2 ² , 3 ²	5
	ii) 0 ³ , 1 ³ , 2 ³ , 3 ³	
d.	Using generating function, find the number of partitions of $n = 6$.	5

Using generating function, find the number of partitions of n = 6. d.

Contd.....3

P13CS42

5

5

5

P13CS42

5

UNIT - V

- 9 a. The number of virus affected files in a system is 1000 (to start with) and this increases 250% every two hours. Use a recurrence relation to determine the number of virus affected files in 5 the system after one day.
 - b. Solve the recurrence relation,

$$a_n + a_{n-1} - 6a_{n-2} = 0$$
 for $n \ge 2$

Given that $a_0 = -l$ and $a_1 = 8$

c. Solve the recurrence relation $2a_{n+3} = a_{n+2} + 2a_{n+1} - a_n$, for $n \ge 0$ with $a_0 = 0$, $a_1 = 1$ and $a_2 = 2$. 5

d. Solve the recurrence relation
$$a_n + 4a_{n-1} + 4a_{n-2} = 8$$
 for $n \ge 2$ & $a_0 = 1$, $a_1 = 2$.

- 10 a. Solve the recurrence relation $a_{n+2}-2a_{n+1}+a_n=2^n$, $n \ge 0$ & $a_0=1$, $a_1=2$, by the method of generating function.
 - b. Suppose there are *n≥2* persons at a party and that each of these persons shake hands with all of the other persons present. Using a recurrence relation, find the number of hand shakes.
 - c. Solve the recurrence relation,

$$a_n = 3a_{n-1} - 2a_{n-2}$$
 for $n \ge 2$ given that $a_1 = 5$ and $a_2 = 3$.

* * * *