P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belgaum)
Fourth Semester, B.E. - Computer Science and Engineering Make-up Examination; July - 2016 Theory of Computation

Note: i) Answer FIVE full questions, selecting ONE full question from each unit.
ii) Assume missing data if any.

UNIT - I
1 a. Define the terms:
(i) Power of an alphabet
(ii) Language
(iii) Finite automata
(iv) ε - closure.
b. Design DFA to accept strings of a's and b's ending with $a b$ or ba and also compute $\hat{\delta}=\left(q_{0}, a b b a\right)$.

2 a. Write subset construction algorithm and convert the following NFA to DFA,

b. Define the equivalence states and minimize the following DFA using table-filling algorithm.

δ	0	1
$\rightarrow \mathrm{~A}$	B	E
B	C	F
${ }^{*} \mathrm{C}$	D	H
D	E	H
E	F	I
$* \mathrm{~F}$	G	B
G	H	B
H	I	C
${ }^{\mathrm{F}} \mathrm{I}$	A	E
UNIT - II		

$L=\{v u v: u, v \in(a, b) * a n d|v|=2\}$.
b. Obtain NFA which accepts strings of a's and b's ending with the string 'ab' and obtain equivalent DFA.

P13CS43

c. Obtain a regular for the FA shown below using Kleen's algorithm.

What is the language corresponding to the regular expression?
4 a . State and prove the pumping lemma for the regular languages.
b. Construct the DFA for the following languages :
$\mathrm{L}_{1}=\{$ Set of 0 's and 1 's with atleast one 1$\}$
$\mathrm{L}_{2}=\{$ Set of 0 's and 1's with atleast one 0$\}$
And draw DFA for the following :
(i) $\mathrm{L} 1 \cup \mathrm{~L} 2$
(ii) $\overline{L_{1}}$
(iii) $L_{1} L_{2}$.
c. Mention the applications of Regular expression and describe any one in detail.

UNIT - III

5 a. Define context free grammar and obtain a grammar to generate the following language, $L=\left\{a^{n} b^{m} c^{k} / n+2 m=k\right.$ for $\left.n \geq 0, m \geq 0\right\}$.
b. Describe Ambiguous grammar and Is the following grammar ambiguous.
$S \rightarrow a B / b A$
$A \rightarrow a S / b A A / a$
$B \rightarrow b S / a B B / b$
c. Consider the grammar $E \rightarrow+E E / * E E /-E E / x / y$. Find the leftmost and rightmost derivation for the string " + - $x y x y$ " and write the parse tree.
6 a. Explain Chomsky Normal form of CFG.
b. Convert the following grammar into GNF,
$S \rightarrow A B 1 / 0$
$A \rightarrow 00 A / B$
$B \rightarrow 1 A 1$
c. Explain the need for simplifying a grammar.

UNIT - IV

7 a. Explain the following terms :
(i) Working of Pushdown Automat
(ii) Language acceptance of PDA
(iii) Instantaneous description
(iv) Deterministic PDA.
b. Design the PDA for the following language $L=\left\{a^{n} b^{2 n} / n \geq 1\right\}$ and show the instantaneous description of the PDA on the input string "aabbbb"

8 a. Design deterministic pushdown automata for the following language and draw the transition diagram $L=\left\{a^{n} c^{m} b^{n} / n, m \geq 1\right\}$.
b. Write the procedure used to convert the given PDA to CFG and also obtain a CFG for the PDA $M=\left(\left\{q_{0}, q_{1}\right\},\{a, b\},\left\{A, Z_{0}\right\} \delta, q_{0}, z_{0}, q_{1}\right\}$ with transitions,
$\delta\left(q_{0}, a, z_{0}\right)=\left(q_{0}, A z_{0}\right)$
$\delta\left(q_{0}, b, A\right)=\left(q_{0}, A A\right)$
$\delta\left(q_{0}, a, A\right)=\left(q_{1}, \varepsilon\right)$

UNIT - V

9 a. Explain the general structure of multi tape and non-deterministic turing machine and show that are equivalent to basic turing machine.
b. Design the turing machine to accept the language $L(M)=\left\{0^{n} 1^{n} 2^{n} / n \geq 1\right\}$ and also write its transition diagram and give instantaneous description for the input " 000111222 ".
10 a. Write short notes on :
(i) Post Correspondence Problem
(ii) Recursive language.
b. Prove that if a language L and its complement are recursively enumerable, then L is recursive.

