P13CS43						Page	No	. 1
Parameter and a second		U.S.N						
(A)	College of En n Autonomous Instit Semester, B.E. – C Make-up Ex Theory	tution aff Comput aminat	<i>iliated to</i> V er Scien	<i>TU, 1</i> ce an - 20	Belgau d Eng	m)		
Time: 3 hrs					Ма	ıx. Mo	arks	: 100
Note: i) Answer FIVE full a ii) Assume missing da		DNE full o	question fr	om ea	ch unii	t.		
		UNIT - I						
1 a. Define the terms:								
(i) Power of an alphabe	et (ii)	Languag	e					
(iii) Finite automata	(iv)	ε- closur	re.					
b. Design DFA to accept	ot strings of a's and	d b's end	ding with	ab or	ba a	nd als	o co	mpute
$\hat{\delta} = (q_0, abba).$								
2 a. Write subset constructi	ion algorithm and co	nvert the	following	NFA t	o DFA	ι,		
	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	0,1	and '	69	L(a))		
b. Define the equivalence	e states and minimize	the follo	wing DFA	using	table-	filling	algo	rithm.
	δ	0	1					
	→A	В	Е					
	В	С	F					
	*C	D	Н					
	D	F	н					

UNIT - II Define a regular expression and obtain a regular expression for, 3 a.

D

Е

*F

G

Η

*I

Е

F

G

Η

Ι

А

Η

I

В

В С

Е

 $L = \{vuv : u, v \in (a, b) * and |v| = 2\}.$

b. Obtain NFA which accepts strings of a's and b's ending with the string 'ab' and obtain equivalent DFA.

6

6

8

6

8

6

8

6

4

c. Obtain a regular for the FA shown below using Kleen's algorithm.

What is the language corresponding to the regular expression?

4 a. State and prove the pumping lemma for the regular languages.
b. Construct the DFA for the following languages :

L₁ = {Set of 0's and 1's with atleast one 1}
L₂ = {Set of 0's and 1's with atleast one 0}
And draw DFA for the following :

(i) L1∪L2
(ii) L1

c. Mention the applications of Regular expression and describe any one in detail.

UNIT - III

5 a. Define context free grammar and obtain a grammar to generate the following language,

L = {aⁿb^mc^k / n + 2m = k for n ≥ 0, m ≥ 0}.

b. Describe Ambiguous grammar and Is the following grammar ambiguous.

S → aB / bA

	$S \rightarrow dB / bA$	6
	$A \rightarrow aS / bAA / a$	0
	$B \rightarrow bS / aBB / b$	
c.	Consider the grammar $E \rightarrow +EE/*EE/-EE/x/y$. Find the leftmost and rightmost	6

- derivation for the string "+*-xyxy" and write the parse tree.
- 6 a. Explain Chomsky Normal form of CFG.
 - b. Convert the following grammar into GNF,

 $S \rightarrow AB1/0$ $A \rightarrow 00A/B$ $B \rightarrow 1A1$ 10

c. Explain the need for simplifying a grammar.

UNIT - IV

7 a. Explain the following terms :

(i) Working of Pushdown Automata	(ii) Language acceptance of PDA	10
(iii) Instantaneous description	(iv) Deterministic PDA.	

b. Design the PDA for the following language $L = \{a^n b^{2n} / n \ge 1\}$ and show the instantaneous description of the PDA on the input string "aabbbb"

Contd....3

P13CS43

Page No... 3

- 8 a. Design deterministic pushdown automata for the following language and draw the transition diagram $L = \{a^n c^m b^n / n, m \ge 1\}.$ 10
 - b. Write the procedure used to convert the given PDA to CFG and also obtain a CFG for the PDA $M = (\{q_0, q_1\}, \{a, b\}, \{A, Z_0\} \delta, q_0, z_0, q_1\}$ with transitions,

$$\delta(q_0, a, z_0) = (q_0, Az_0)$$

$$\delta(q_0, b, A) = (q_0, AA)$$

$$\delta(q_0, a, A) = (q_1, \varepsilon)$$
10

UNIT - V

- 9 a. Explain the general structure of multi tape and non-deterministic turing machine and show that are equivalent to basic turing machine.
 b. Design the turing machine to accept the language L(M) = {0ⁿ1ⁿ2ⁿ / n ≥ 1} and also write its transition diagram and give instantaneous description for the input "000111222".
 10 a. Write short notes on :

 (i) Post Correspondence Problem
 (ii) Recursive language.
 - b. Prove that if a language L and its complement are recursively enumerable, then L is recursive.