U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Fifth Semester, B.E. - Computer Science and Engineering Semester End Examination; Dec. - 2014 Operating System

Time: 3 hrs Max. Marks: 100

Note: i) Answer any FIVE full questions, selecting at least TWO full questions from each part. ii) Assume suitable missing data if any.

PART - A

- 1. a. Explain the following terms:
 - (i) Bootstrap Program
- (ii) Caching

(iii) trap

10

iv) Job pool

- v) Symmetric multiprocessing.
- b. List operating system operation and its importance of transition.

10

2 a. What is a system call? Explain with an example.

- 5 5
- b. What are system program and write its importance?c. Differentiate between CPU- scheduler and Dispatcher. Explain the criteria for comparing
- 10

3 a. Explain the following with neat diagrams:

CPU scheduling algorithms.

10

- i) use threads ii) Kernel level threads
- b. Consider the following set of processes with arrival time.

Process	Burst Time	Arrival Time		
P ₁	10	0		
P ₂	1	0		
P ₃	2	1		
P ₄	4	2		
P ₅	3	2		

8

- i) Draw the Gantt chart using FCFS, SJF preemptive and Non- preemptive scheduling.
- ii) Calculate the waiting and average waiting for each of the scheduling algorithm.
- c. Write the differences between multi level queue scheduling and multi level feedback queue scheduling.

2

4 a. Explain Dining-philosophers problem using monitors.

10

b. What is race condition? Explain readers writers problems with semaphore.

10

PART - B

5 a. For the following snapshot find the safe sequence using bankers algorithm. The number of resource units are R_1 , R_2 , R_3 which are 7, 7, 10 respectively.

Process	Allo	cated Resource	ces	Max. requirements			
	R_1	R_2	R_3	R_1	R_2	R_3	
\mathbf{P}_1	2	2	3	3	6	8	
P ₂	2	0	3	4	3	3	
P ₃	1	2	4	3	4	4	

6

6

8

8

4

8

12

10

- b. Explain different methods to recover from deadlock.
- c. Deadlock exists if a cycle exists. Yes or No. Justify the answer with an example.
- 6 a. Why are translation look-aside buffers (TLB) important? In a Simple paging system, what information is stored in TLB? Explain.
 - b. Given the memory partition of 100 K, 500K, 200K, 300K and 600K apply first fit and best fit algorithm to place 212K, 417K, 112K and 426K.
 - c. What is Swapping? Does this increase the operating system overhead? Justify your answer.
- 7 a. What are the functions performed by the virtual memory manager? Explain.
- b. For the following page reference string calculate the number of page faults with FIFO and LRU page replacement policies when i) no. of page frames are three
 - ii) Number of page frames are four.

Page reference string: 5 4 3 2 1 4 3 5 4 3 2 1 5

- 8 a. What is a file? Explain the different allocation methods.
- b. Suppose the position of cylinder is at 53. Sketch the graphical representation for the queue of pending requests in the order
 - 98, 183, 37, 122, 14, 124, 65, 67 for FCFS, SSTF and LOOK scheduling scheme.

* * * *