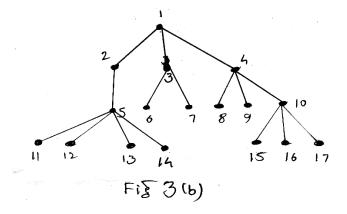
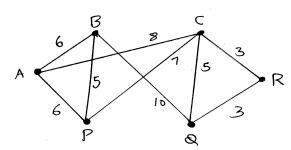
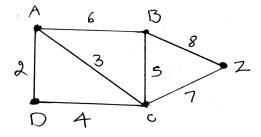

Page No... 1


- vi) Has a Hamilton path but not Hamilton circuit.
- d. Construct a coloring of the graph shown below. What is the chromatic number of the graph?

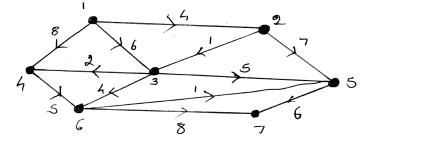

- 3 a. Define a tree. Prove that for every tree T = (V, E), if $|v| \ge 2$ then T has at least 2 pendent vertices.
 - b. Write the preorder and post-order listing of the following tree.

8


6

- c. Write the Depth first search algorithm.
- d. Construct an optimal prefix code for symbols a, o, q, u, y, z that occur with frequencies 20, 28, 4, 17, 12, 7 respectively.
- 4 a. Using the Kurskal's algorithm, find a minimal spanning tree of the weighted graph shown below.

b. For the network shown below, determine the maximum flow between A and Z identifying a cut-set of minimum capacity.


6

4

4

6

c. Using the Dijkstra's algorithm, obtain the shortest path from vertex 1 to each of the other vertices in the weighted, directed network shown below; indicate the weights of these shortest paths.

8

PART - B

5 a.	A committee of eight is to be formed from16 men and 10 women. In how many ways can the	
	committee be formed if:	
	i) there are no restrictions ii) there must be 4 men and 4 women	10
	iii) there should be an even number of women iv) more women than men	
	v) at least 6 men	
b.	How many different arrangements of the letters in TALLAHASSEE is possible? How many of	4
	these arrangements have no adjacent A's?	Т
c.	Find the coefficient of $a^2b^3c^2d^5$ in the expansion of $(a + 2b - 3c + 2d + 5)^{16}$.	6
6 a.	Determine the number of positive integers n where $1 \le n \le 100$ and n is not divisible by	6
	2, 3 or 5.	0
b.	Determine in how many ways can the letter in the word ARRAMGEMEMT be arranged so that	
	i) There are exactly two pairs of consecutive identical letters.	6
	ii) At least two pairs of consecutive identical letters.	
c.	A machine that inserts into envelops goes haywire and inserts letters randomly into envelops.	
	What is the probability that in a group of 100 letters	
	i) no letter is put into the current envelope ii) exactly 1 letter is put into the envelope	8
	iii) exactly 98 letters are put into the correct envelope	
	iv) exactly 99 letters are put into the envelope v) all letters are put into the correct envelopes.	
7 a.	Determine the generating function for the number of n-combinations of apples, bananas,	
	oranges and pears wherein each n-combination the number of apples is even, the number of	6
	bananas is odd, the number of oranges is between 0 and 4 and there is at least one pear.	
b.	In how many ways can a police captain distribute 24 rifles shells to four police officers so that	6
	each officer gets at least three shells, but not more than eight?	0
c.	Determine the number of integral solutions of the equation	
	$x_1 + x_2 + x_3 + x_4 = 18$	8
	Subject to $1 \le x_1 \le 5, -2 \le x_2 \le 4, 0 \le x_3 \le 5, 3 \le x_4 \le 9$	
8 a.	A bank pays 6% annual interest on savings compounding the interest monthly. If you deposit	4
	Rs.1000 on the first day of May, how much will this deposit be worth a year latter.	Т
b.	Solve the recurrence relation	8
	$F_{n+2} = F_{n+1} + F_n$, where $n \ge 0$, $F_0 = 0$, $F_1 = 1$	0
c.	using only the three letters a , b , c words of length n are to be transmitted over a communication	
	channel subject to the condition, that no word in which two a's appear consecutively is to be	8
	transmitted. Find the number of words allowed by the communication channel	