

U.S.N

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Fifth Semester, B.E. - Computer Science and Engineering Semester End Examination; Dec. - 2015 Interactive Computer Graphics and Visualization

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

		UNIT - I			
1	a.	Distinguish between the following:			
		i) Random scan and Raster Scan display			
		ii) Stroke text and Raster text	8		
		iii) RGB color model and indexed color model.			
		iv) Display processor and pipeline Architecture.			
	b.	Write a typical main function that works for most non-interactive applications and explain	12		
		each function call in it.	12		
2	a.	Describe briefly the attribute functions of Open GL.	6		
	b.	Explain polygon basics and different types of polygons used in Open GL.	8		
	c.	Write a note on modeling - Rendering paradigm.	6		
		UNIT - II			
3	a.	Rotate a triangle A(0, 0), B(2, 2), C(4, 2) about the origin and about p(-2, -2) by and angle of	10		
		45°.	10		
	b.	List the geometric objects and associated operations in affine space.	10		
4	a.	Explain the transformation matrix functions supported by Open GL.	10		
	b.	Derive a matrix to perform rotation about an arbitrary axis using concatenation of	10		
		transformation.	10		
UNIT - III					
5	a.	Find the clipping Co-ordinates for a line P_1 , P_2 where $P_1 = (10, 10)$ and P_2 (60, 30) against			
		window with $(X_{wmin}, Y_{wmin}) = (15, 15)$ and $(X_{wmax}, Y_{wmax}) = (25, 25)$ using Liang-Barsky	10		
		algorithm.			
	b.	Write a note on how menus can be created and used in Open GL.	6		
	c.	Enlist any four classes of logical input devices that are used in Open GL.	4		
6	a.	Explain how an event driven input can be performed for window and keyboard events.	10		
	b.	Use Cohen-Sutherland Outcode algorithm to chip two lines $P_1(40, 15)$, $P_2(75, 45)$ and $P_1(70, 20)$ and $P_2(100, 10)$ against a window $A_2(50, 10)$, $P_2(80, 10)$, $P_2(80, 40)$ and $P_2(50, 40)$	10		
		P ₃ (70, 20) and P ₄ (100, 10) against a window A(50, 10), B(80, 10), C(80, 40) and D(50, 40).			

P13CS55 Page No... 2

UNIT - IV

7 a	. How is view volume is specified in Open GL? Explain with examples.	10
t	b. Describe different classical views with a neat diagram.	10
8 a	. Explain and derive the matrices for parallel projection.	8
t	b. Explain the hidden surface removal algorithm.	8
C	e. Define the terms :	
	i) Centre of projection	4
	ii) Direction of projections	
	UNIT - V	
9 a	a. Compare Gourand and Phong's shading.	8
t	o. Discuss the different methods available for shading a polygonal mesh.	12
10a	. Explain the different properties of Bezier curve.	6
t	b. State the three basic ways of specifying spline curve.	6
C	e. Write a note on cubic B-splines.	8

* * * *