

- 3 a. What is voltage regulation of a transformer? Explain with neat circuit diagram O.C. and S.C. test to find the efficiency and voltage regulation of a transformer.
 - b. Give an account of various losses that occur in the transformer. How these losses do are minimized.
 - c. A 4 kVA 200/400 single phase transformer supplying full load current at 0.8 lagging power factor – the O.C. and S.C. tests results are as follows:

O.C. Test :	200 V	70 W	0.8 A (L.V. side)
S.C. Test :	20 V	60 W	10 A(H.V. Side)

Calculate efficiency, secondary voltage and current drawn by the primary at the above load. Calculate the load at unity factor corresponding to maximum efficiency.

6

8

6

Page No... 2

- 4 a. With a neat diagram explain Sumpner's test for determining the efficiency and voltage regulation of a transformer. Mention its advantages and disadvantages.
 - b. Define All day efficiency of a transformer. Explain its importance in the design of distribution transformers.
 - c. A 5 kVA distribution transformer has full load efficiency at u.p.f. of 95% the copper and Iron losses then being equal. Calculate it's All day efficiency, if it is loaded throughout the 24 hrs as follows:

No load 10 Hrs, quarter load for 7 hours

Half load for 5 Hrs, full load for 2 Hrs

Assume load pf as unity.

Unit - III

- 5 a. State and explain the condition to be satisfied for successful parallel operation of transformers. 6
 - b. Explain with the help of connection and phasor diagrams. How Scott connection can be used to obtain two phase supply from 3 phase supply mains.
 - c. Two 2200/110 V, transformers are operated in parallel to share a load of 125 kVA at 0.8 p.f. lagging transforms are rated as below.

A:	100 kVA	0.9% resistance and 10% reactance
B:	50 kVA	1% resistance and 5% reactance

Find the kVA load carried by each transformer.

- 6 a. What are the advantages of a transformer bank of three single phase transformers over a unit three phase transformer of the same kVA rating?
 - b. What is Open-Delta connection? Prove that the capacity of V-V Bank is 58% of Δ Δ capacity.
 - c. A Δ Δ bank consisting of three 20 kVA, 2300/230 V transformers supplies a load on 40 kVA. If one of the transformers is removed, find for the resulting V V connection
 - (i) kVA load carried by each transformer
 - (ii) Percent of rated load carried by each transformer
 - (iii) Total kVA rating of V-V bank
 - (iv) Ratio of the V-V bank to Δ - Δ bank transformer ratings.

Unit - IV

7 a. Explain with neat sketches the construction of squirrel cage and slip ring induction motor.Mention the advantages and disadvantages of each type.

8

6

8

6

6

6

8

P08I	P08EE36 Page No 3	
b.	In a 3 phase Induction motor, show that	6
	Rotor Input: Rotor Copper loss: Mechanical power developed equal to 1:S:1-S.	0
c.	The power input to the rotor of 400 V 50 Hz, 6 poles, 3ϕ induction motor is 75 kW. The	
	rotor electromotive force is observed to make 100 complete alterations per minute.	6
	Calculate; (i) Slip (ii) Rotor speed	0
	(iii) Rotor Copper loss/ phase (iv) Mechanical Power developed	
8 a.	Draw the complete torque slip characteristics of a 3 phase Induction motor indicating all the regions and explain.	7
b.	A 3 phase.400 V, 50 Hz, 4pole induction motor has star connected stator winding the rotor	
	resistance and reactance of 0.1 Ω and 1 Ω respectively. The FL speed is 1440 rpm. Calculate	6
	the torque developed on FL by the motor. Assume stator to rotor ratio as 2:1.	
c.	Write a brief note on the speed control of 3 phase induction motors.	7
	Unit - V	
9 a.	Explain how the performance of a 3 phase induction motor is predetermined from the circle	10
	diagram by conducting open circuit and blocked rotor tests.	10
b.	Explain the necessity of a starter for 3 phase induction motor and with necessary circuit	6
	diagram. Explain the working of a star-Delta starter.	0
c.	Explain the phenomenon of cogging and crawling in 3 phase induction motor.	4
10 a.		
	Explain why single phase induction motor is not self starting. Describe any one method of	7
	Explain why single phase induction motor is not self starting. Describe any one method of starting of a single phase induction motor.	7
b.		
b.	starting of a single phase induction motor.	7 7
	starting of a single phase induction motor. With neat sketch, explain the construction, working principle and application of capacitor	7
	starting of a single phase induction motor. With neat sketch, explain the construction, working principle and application of capacitor start single phase induction motor.	