U.S.N | |
| :--- |

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belgaum)
Third Semester, B.E. - Electrical and Electronics Engineering
Semester End Examination; Dec. - 2014
Digital Electronics
Time: 3 hrs
Max. Marks: 100
Note: i) Answer FIVE full questions, selecting ONE full question from each Unit.
ii) Assume suitable missing data if any.

Unit - I

1 a . Examine whether the following expressions are equivalent using truth table.
i) $f_{1}=(\overline{a+b})(\overline{\bar{a}+\bar{b}})$
ii) $\begin{aligned} & g_{1}=a+\bar{a} b \\ & g_{2}=a+b\end{aligned}$
b. Complement the following Given Boolean expression:
i) $f=\bar{b}(\overline{a c}+b c \bar{d})$
ii) $f=a \bar{c}(\overline{a \bar{c}}+b \bar{d})$
c. Prove the following identities

$$
\begin{array}{ll}
\text { i) }(a+b)(\bar{a} \bar{c}+c)(\overline{\bar{b}+a c})=\bar{a} b & \text { ii) } a \bar{b}+b \bar{c}+\bar{a} c=\bar{a} b+\bar{b} c+a \bar{c}
\end{array}
$$

2 a. State and prove distributive law and absorption law using relevant truth table.
b. Implement the basic gates using universal gates.
c. Write the expression in algebraic form for the functions :
i) $f(w, x, y, z)=\sum m(4,8,10,14)$
ii) $f(a, b, c)=\pi M(0,3,5)$

Unit - II

3 a. Find the minimal sums for the following Boolean functions:
i) $f(a, b, c)=\sum m(1,3,4,5,6,7)$
ii) $f(a, b, c)=\pi M(2,4,7))$
b. Find all the prime implicants of the function $f(a, b, c, d)=\sum m(0,2,3,4,8,10,12,13,14)$ using Quine-Mcdusky method.
4 a. Realize the full subtractor in terms of its truth table expression for borrow and difference and implement it.
b. Design a carry look ahead adder for 4 stage adder and write the logic circuit.
c. What is full adder? Realize full adder using NAND gate only

Unit - III
5 a. Implement the following functions using 3 to 8 decoder with NAND outputs:

$$
f_{1}(a, b, c)=\sum m(1,3,5,6)
$$

b. Give the comparison between multiplexer and de-multiplexer.
c. Explain the working of gated SR latch and gated D-Latch.

6 a. Implement the following function using a 4:1 MUX with $\mathrm{a} \& \mathrm{~b}$ as select lines $f(a, b, c, d)=\sum m(0,1,5,6,7,9,10,15)$
b. Give the comparison between encoder and decoder.
c. Explain the working of Master slave JK flip-flop with logic diagram.

Unit - IV

7 a. Explain Mealy and Moore models of a clocked synchronous sequential network.
b. With neat logic diagram, explain the working of a 4 bit PISO register.

8 a. Distinguish:
i) Synchronous and Asynchronous counter
ii) Ripple counter and Ring counter
b. Design a mod-4 counter (Synchronous type) using JK flip-flop. Implement the logic and give the table for R output of the counter.
c. With the help of logic diagram and state diagram explain the operation of Johnson counter.

Unit - V

9 a. List the various characteristics of A / D convertor and D / A convertor
b. Explain the operation of a 4 bit R-2R type DAC and derive the expression for the output voltage.

10 a . Explain the operation of flash A/D converter.
b. Draw the circuit diagram and explain the operation of 2 input TTL NAND gate with Totempole output.
c. Draw and explain the basic CMOS inverter circuits.

