U.S.N					

6

10

P.E.S. College of Engineering, Mandya - 571 401

 $(An\ Autonomous\ Institution\ affiliated\ to\ VTU,\ Belgaum)$

Third Semester, B.E. - Electrical and Electronics Engineering Semester End Examination; Dec. - 2014 Digital Electronics

Time: 3 hrs Max. Marks: 100

Note: i) Answer FIVE full questions, selecting ONE full question from each Unit. ii) Assume suitable missing data if any.

Unit - I

1 a. Examine whether the following expressions are equivalent using truth table.

i)
$$f_{1} = (\overline{a+b})(\overline{a+\overline{b}})$$

$$f_{2} = \overline{ab}(ab)$$
ii)
$$g_{1} = a + \overline{ab}$$

$$g_{2} = a + b$$

b. Complement the following Given Boolean expression:

i)
$$f = \overline{b}(\overline{ac} + bc\overline{d})$$
 ii) $f = a\overline{c}(\overline{a}\overline{c} + b\overline{d})$

c. Prove the following identities

i)
$$(a+b)(\overline{ac}+c)(\overline{\overline{b}+ac}) = \overline{ab}$$
 ii) $a\overline{b}+b\overline{c}+\overline{ac} = \overline{ab}+\overline{bc}+\overline{ac}$

- 2 a. State and prove distributive law and absorption law using relevant truth table.
 - b. Implement the basic gates using universal gates.
- c. Write the expression in algebraic form for the functions:

i)
$$f(w, x, y, z) = \sum m(4, 8, 10, 14)$$
 ii) $f(a, b, c) = \pi M(0, 3, 5)$

Unit - II

3 a. Find the minimal sums for the following Boolean functions:

i)
$$f(a,b,c) = \sum m(1,3,4,5,6,7)$$
 ii) $f(a,b,c) = \pi M(2,4,7)$

- b. Find all the prime implicants of the function $f(a,b,c,d) = \sum m(0,2,3,4,8,10,12,13,14)$ using Quine-Mcdusky method.
- 4 a. Realize the full subtractor in terms of its truth table expression for borrow and difference and implement it.
 - b. Design a carry look ahead adder for 4 stage adder and write the logic circuit.
 - c. What is full adder? Realize full adder using NAND gate only

Unit - III

5 a. Implement the following functions using 3 to 8 decoder with NAND outputs:

$$f_1(a,b,c) = \sum m(1,3,5,6)$$
5

P1.	3 E	EE34 Page No 2			
ł	э.	Give the comparison between multiplexer and de-multiplexer.	3		
(Э.	Explain the working of gated SR latch and gated D-Latch.	12		
6 a	ı.	Implement the following function using a 4:1 MUX with a & b as select lines	-		
		$f(a,b,c,d) = \sum m(0,1,5,6,7,9,10,15)$	7		
ł	э.	Give the comparison between encoder and decoder.	3		
(Э.	Explain the working of Master slave JK flip-flop with logic diagram.	10		
		Unit - IV			
7 8	ì.	Explain Mealy and Moore models of a clocked synchronous sequential network.	10		
ł	э.	With neat logic diagram, explain the working of a 4 bit PISO register.	10		
8 8	ı.	Distinguish:			
		i) Synchronous and Asynchronous counter	4		
		ii) Ripple counter and Ring counter			
•		sign a mod-4 counter (Synchronous type) using JK flip-flop. Implement the logic and			
		give the table for R output of the counter.	10		
(Э.	With the help of logic diagram and state diagram explain the operation of Johnson counter.	6		
		Unit - V			
9 8	ı.	List the various characteristics of A/D convertor and D/A convertor	10		
ł	э.	Explain the operation of a 4 bit R-2R type DAC and derive the expression for the output	10		
		voltage.	10		
10	a.	Explain the operation of flash A/D converter.	6		
ł	э.	Draw the circuit diagram and explain the operation of 2 input TTL NAND gate with Totem-	8		
		pole output.	J		
(•	Draw and explain the basic CMOS inverter circuits	6		

* * * * *