$$
\text { U.S.N } \begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline & & & & & & & & \\
\hline
\end{array}
$$

P.E.S. College of Engineering, Mandya - 571401
 (An Autonomous Institution affiliated to VTU, Belgaum) Third Semester, B.E. - Electrical and Electronics Engineering Semester End Examination; Dec. - 2015

Network Analysis - I
Time: 3 hrs
Max. Marks: 100
Note: i) Answer any FIVE full questions, selecting ONE full question from each unit.
ii) Justify the assumptions made if any.

UNIT - I

1 a. Reduce the network shown in Fig. 1(a) to a single source form about the terminals X, Y.

c. Find the current i_{x} in the network shown in Fig. 1(c) using nodal analysis.

2 a. Derive the equivalent delta impedances of star connected impedances. Find the equivalent resistance R_{XY} for the network shown in Fig. 2(a).

Fig2(a)
b. Find the current i_{x} in the network shown in the Fig. 1(c) using loop analysis.
c. Find the voltage across the 5Ω resistor in the network shown in Fig. 2(c). Also find the conductivity coupled equivalent of the network.

Fig 2(c)

UNIT - II

3 a. Verify reciprocity theorem for the network shown in Fig. 3(a).

5 a . Show that the locus of the current in a series RL circuit is circular.
b. Draw the dual of the network shown in Fig. 5(b). Write the corresponding equations for the two networks.
 procedure to draw a dual network.
b. For the network graph of the network shown in Fig. 5(c) and for the specified tree, obtain the loop equations.
c. Consider a parallel circuit with $Z_{1}=R_{1}+j X_{L}$ and $Z_{2}=R_{2}-j X_{c}$. If each one of these four elements is varied one at a time, draw the total current locus in each case.

UNIT - IV

7 a . Explain phase sequence, positive sequence and negative sequence of a three phase system. Draw a 3 - wire and 4 - wire three phase system. Establish the relation between line and phase voltages in a star connection.
b. A balanced 3-ph, 440 V , RYB sequence supply feeds an unbalanced star load. When the phase R supply voltage is $254-30^{\circ} \mathrm{V}$, the voltage across the phase R impedance load is $200-15^{0} \mathrm{~V}$. Find the voltage in the other load phase.
8 a . The phase current I_{AB} of a balanced delta connected load fed by a 3-phase $220 \mathrm{~V}, \mathrm{ABC}$ sequence supply is $10-30^{\circ} A$. Find the line currents. Draw the complete phasor diagram. Find the total power consumed by the load and the resistive part of the load.
b. Three impedances $Z_{A}=50 \underline{0^{\circ}}, Z_{B}=j 10 \Omega, Z_{C}=-j 10 \Omega$ are star connected across a 3 phase, 100 V , ABC sequence supply. Find neutral shift voltage and all the load phase voltages.

UNIT - V

9 a . What are the conditions for the existence of FS representation? Give the three forms of the FS expansion of a periodic signal.
b. Find the exponential Fourier series of a saw tooth wave form of amplitude A, period of 2π, starting from 0 .

10 a . Discuss the various symmetries in the FS analysis.
b. A series RL circuit with $\mathrm{R}=18 \Omega$, and $\mathrm{L}=0.0413 \mathrm{H}$ is fed from a source of $v(t)$ given by $v(t)=180 \sin \left(314 t+10^{\circ}\right)+56 \sin \left(942 t+35^{\circ}\right)+18 V$ Find;
i) The expression for current
ii) rms value of $v(t)$ and $i(t)$
iii) pf of the circuit.

