U.S.N

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Third Semester, B.E. - Electrical and Electronics Engineering Semester End Examination; Dec. – 2015 Digital Electronics

Time: 3 hrs Max. Marks: 100

Note: i) Answer FIVE full questions selecting ONE full question from each unit.

ii) Assume suitable missing data if any.

UNIT - I

- 1 a. Mention the advantages of digital systems over analog systems.
 - b. Construct the truth table for each of the following Boolean functions

i)
$$f(x, y, z) = yz + (\overline{x} + y)(\overline{x} + \overline{z})$$
 ii) $f(w, x, y, z) = wxy + \overline{w}(\overline{y} + z)$

c. Complement the following Boolean expressions,

i)
$$y = \overline{ab} (ab + b\overline{d})$$
 ii) $y = \overline{ab} (ab)$

- 2 a. State and prove Redundant Literal Rule (RLR) using relevant truth table.
 - b. Show that $y = f(A, B, C) = \sum (0.1, 3, 4, 6, 7)$ is the complement of $y = f(A, B, C) = \pi(2.5)$
 - c. Draw the simplest possible logic diagram that implements the output of the logic diagram shown below

UNIT - II

3 a. Minimize and implement the following multiple output. Functions in SOP form using K-Map

i)
$$F = \sum m(1, 2, 5, 6, 8, 9, 10)$$
 ii) $F = \sum m(0, 1, 4, 6, 8, 9, 11) + d(2, 7, 13)$

b. Find a minimal sum for the Boolean function using Quine McClusky method and PI table reduction $F(a,b,c,d,e) = \sum m(0,1,9,15,24,29,30) + d(8,11,31)$

4 a. Realize full subractor using only NOR gates.

b. Design a 4 – bit carry look ahead adder and write the logic circuit.

c. Draw the circuit of full adder using two half adders.

Contd...2

5

10

5

6

8

6

10

10

8

8

4

UNIT - III

5 a. Define encoder. Explain Decimal to BCD encoder with logic symbol, truth table and circuit diagram.

7

b. Implement the following function using a decoder minimizing the number of inputs to be summed,

5

$$f_1(a,b,c) = \sum m(0,2,3,5,6,7)$$
 $f_2(a,b,c) = \sum m(1,3,4,6,7)$

- 8
- c. Define demultiplexer and design 1:8 line DE MUX with an illustrative truth table and circuit involving basic gates.

8

6. a. With the help of logic diagram and truth table explain DF/F and S. R F/F.

8

b. Distinguish between combinational and sequential circuits.

4

c. Explain the working of Master slave JK flip flop with logic diagram.

8

UNIT-IV

7 a. Explain Mealy and Moore Models of a clocked sequential circuit.

10 10

b. Design a 3 – bit synchronous up counter using JK flip – flops.

10

 $8\,$ a. With a neat logic diagram, explain the working of a 4- bit PISO register.

4

b. Distinguish between synchronous and asynchronous counter.

c. Explain the operation of 4 – bit Johnson counter with the help of logic diagram and state diagram.

6

UNIT - V

9 a. Explain the operation of 4 – bit binary weighted DAC and also derive the expression for a output voltage.

10

b. Determine the output voltage of the circuit as shown in Fig. Q. (b) when digital inputs are 0010 and 1010.

5

c. Explain the operation of flash ADC.

5

10 a Define the following terms:

8

- i) Fan out ii) Noise Margins iii) Propagation delay
- iv) Power dissipations
- b. Explain briefly Emitter Coupled Logic (ECL) with circuit diagram.

6

c. Draw and explain MOS inverter circuits.

6