\square

P.E.S. College of Engineering, Mandya - 571401
 (An Autonomous Institution affiliated to VTU, Belgaum)
 Third Semester, B.E. - Electrical and Electronics Engineering Semester End Examination; Dec - 2016/Jan - 2017 Network Analysis

Time: 3 hrs
Max. Marks: 100
Note: Answer FIVE full questions, selecting ONE full question from each unit.
UNIT - I
1 a . Draw a network which will have the following loop equations and determine V_{2} such that there will be zero current through 4Ω resistor.

$$
\left[\begin{array}{ccc}
5+j 2 & -j 2 & 0 \\
-j 2 & 4 & j 2 \\
0 & j 2 & (2-j 2)
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right]=\left[\begin{array}{c}
50\lfloor 0 \\
0 \\
-V_{2}
\end{array}\right]
$$

b. Find $\mathrm{V}_{\mathrm{a}}, \mathrm{V}_{\mathrm{b}}$ and I_{ab} in the Fig. 2 b by $\mathrm{Y}-\Delta$ transformation.

c. Obtain an expression for frequency $\left(f_{L}\right)$ in terms of circuit components in a series resonant circuit when the voltage across inductor V_{L} reaches its peak. Plot the variation of voltage across R, L and C as frequency varies.

UNIT - II

3 a. Find the terminal voltage V_{ab} for the circuit shown in Fig. 3a using superposition theorem.
 reactance parameters of the load are variable.
c. For the graph shown in Fig. 3c, select a tree and write the cut set schedule. Obtain there from the equation giving branch voltages in terms of tree branch voltages.

4 a. Obtain the Thevenin's equivalent circuits across terminals A and B for the circuit shown in Fig. 4 a .

b. For the circuit shown in Fig. 4b, find the current i, using super poistion theorem.

UNIT - III

5 a. For the circuit shown in Fig 5a. switch is closed at $t=0$, find, $i_{1}(0+), i_{2}(0+), \frac{d i_{1}}{d t}(0+), \frac{d i_{2}}{d t}(0+), \frac{d^{2} i_{1}}{d t^{2}}(0+)$ and $\frac{d^{2} i_{2}}{d t^{2}}(0+)$

b. Find the Laplace transform of a half wave rectified sine wave show in Fig. 5b.

c. Obtain an expression $e(t)$ for the wave fin shown in Fig. 5c.

UNIT - IV

7 a . In the circuit shown in Fig. 7a, switch is closed at $t=0$. Obtain an expression $i_{2}(t)$ using Laplace transformation method.
b. In the circuit shown in Fig. 7b. obtain an expression for $I(S)=\frac{V(S)}{Z(S)}$

c. Using convolution theorem find response to an excitation of $v(t)=e^{-2 t}$ given that the impulse response of the network is $h(t)=\delta(t)-e^{-3 t}$.

8 a . Obtain an expression for $i(t)$ using Laplace transformation method. Assume capacitor has charged to 1 V at $t=(0-)$ (refer Fig. 8a)

UNIT - V
9 a . Plot the time response for the following :
i) Complex conjugate poles on left half of S plane
ii) A simple real pole on the left half of S plane
iii) Complex conjugate poles on right half of S plane.
b. Obtain the following:
i) h parameters in terms of ABCD parameter
ii) h paramter in term of Y parameter.
c. Find Y parameter of the following resistance network shown in Fig. 9C.

10 a . Draw the second order response of the system if,
i) $\delta=0$ (no damping)
ii) $0<\delta<1$ (damping <1)
iii) $\delta>1$ (damping >1)
iv) $\delta=1$ (critically damped)
b. Write the networks which are equivalent to the general two port network in terms of, i) Z- parameter ii) h - parameters
c. Find the Y parameter for the network shown in Fig. 10 C.

