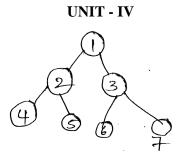
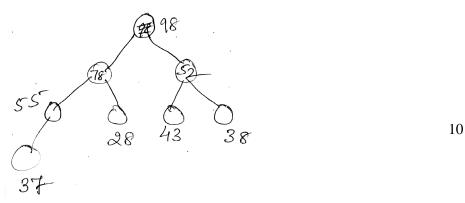
P15EE35 Page No 1		
	U.S.N	
	P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Third Semester, B.E Electrical and Electronics Engineering Semester End Examination; Dec - 2016/Jan - 2017 Data Structures with C Sime: 3 hrs Max. Marks: 100	
IN	ote: Answer FIVE full questions, selecting ONE full question from each unit. UNIT - I	
1 a. b.	What is a pointer? Show its usage in a C program. Explain the concept of static and dynamic memory allocation. By using one dimensional array, write a program in C to arrange numbers from 1 to 10 in	10 10
2 a.	ascending order. Bring out the difference between a structure and union with an example. In what way structure is superior to union?	10
b.	In what way an algorithm help in design of a Data structure? Explain the concept of Data abstraction. What is the advantage of Data Abstraction?	10
	UNIT - II	
3 a.	Explain the operation of Stack and Queue with an example. Mention one application of Stack and Queue.	10
b.	Explain the storage of the expression $(a*b) + (c*d) + (p*q*r*s)$ in stack and queue.	10
4 a.	Convert $(a*b) + (c*d)$ into prefix and postfix expressions.	10
b.	Show the Implementation of Stack and Queue by using one dimensional array with a valid example.	10
	UNIT - III	
5 a.	Show the numbers 1, 2, 3, 4, 5 in a singly and doubly linked list. Also show the above data representation in one dimensional array.	10
b.	For the below sparsed matrix, show the data storage in singly linked list and doubly linked list.	
	$\begin{bmatrix} 2 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}_{(7x5)}$	10
6 a.	Show the representation of chains by using a standard C program. Show all header files in the program.	10


b. Write a C program to represent a singly linked list. The list should have 'n' nodes.

Contd.....2

10

P15EE35


Show the Prefix, Post-fix and Infix traversals. Data is shown in nodes in the above diagram. Represent the Data in one dimensional array (assume data elements).

b. Compare the operation of a heap and a binary tree with example trees. Show a min heap and a max heap with 6 data elements.

10

10

8 a.

- (i) Insert 87 in the above heap
- (ii) Delete 98 in the above heap after insertion of 87.
- b. Build a heap by using following data elements,
 8, 20, 9, 4, 15, 10, 7, 10, 7, 22, 3,12.

UNIT - V

9 a.	Why Optimal search tree is known as efficient Binary search Tree? Draw a standard AVL	10
	Tree.	10
b.	List two applications of AVL Trees. What are its advantages?	10
10 a.	Show a Red Black Tree with 10 data elements. What is the concept of Red Black Trees?	10
b.	Why a splay tree is used? Compare the usage of AVL trees and splay trees.	10

* * *