P	15EE36 Page No 1	
-		
	P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Third Semester, B.E Electrical and Electronics Engineering Semester End Examination; Dec - 2016/Jan - 2017 Measurement and Instrumentation ime: 3 hrs Max. Marks: 100	
N	ote: Answer FIVE full questions, selecting ONE full question from each unit. UNIT - I	
1 a.	Derive the dimensions in LMTI for the following quantities,	
	i) Electric flux density ii) EMF iii) Capacitance.	6
b.	With usual notations, show that equation $\frac{1}{\sqrt{\mu\epsilon}}$ has the dimension of velocity.	6
c.	The torque expression for an electrodynamometer wattmeter is given by T α $M^a E^b Z^c,$ where	
	M = Mutual inductance, $E = Voltage$, $Z = Impedance$. Find the values of a, b, and c using LMTI	8
	system.	
2 a.	With neat diagram, explain the construction and working of Electro Dynamometer (EDM) type wattmeter. Also list out errors that occur in EDM type wattmeter.	10
b.	Explain the various types of compensation employed in energy meter to overcome the losses.	6
c.	A single phase, 50 A, 230 V energy meter on full load test makes 61 revolutions in 37 seconds.	
	If the normal disc speed is 520 revolutions per kWh. Determine the percentage error as a	4
	percentage of true speed. Is the situation is beneficial to the consumer? Reason out.	
	UNIT - II	
3 a.	Define sensitivity of Wheatstone bridge with necessary circuit diagram. Hence, deduce the expression for sensitivity of the bridge, ' S_B '.	6
b.	With a neat diagram, explain the construction and working of a Megger.	6
c.	A Kelvin double bridge, each of the ratio arms $P = Q = p = q = 1000 \Omega$. The EMF of the battery	
	is 100 V and a resistance of 5 Ω is included in the battery circuit. The galvanometer has a	
	resistance of 500 Ω and the resistance of the link correcting the unknown resistance to the	
	standard resistance may be neglected. The bridge is balanced when the standard resistance	
	$S = 0.001 \Omega$. Determine;	8
	i) The value by unknown resistance	
	ii) The current through the unknown resistance R at balance	
	iii) The deflection of the galvanometer when the unknown resistance R is changed by 0.1% from	
	its value at balance. The galvanometer has a sensitivity of 200 mm/µA.	

P	15EE36 Page No 2			
4 a.	Explain the measurement of self inductance of a coil using Anderson's Bridge.	8		
b.	Explain in brief, the sources and detectors used in AC Bridges for measurement of unknown	ſ		
	elements.	6		
c.	A sheet of bakelite 4.5 mm thick is tested at 50 Hz between electrodes 12 cm in diameter. The			
	schering Bridge employees a standard air capaicitor C2 of 106 pF capacitance, a non-inductive			
	resistance R_4 of $\frac{1000}{\pi}$ ohms in parallel with a variable capacitor $C_4 = 0.5 \ \mu\text{F}$ and $R_3 = 260 \ \Omega$.	6		
	Calculate the capacitance, dissipation factor and relative permittivities of the sheet.			
UNIT - III				
5 a.	What are shunts and multipliers? Derive an expression for both with reference to the meters used	8		
	in electrical circuit.			
b.	A moving coil meter has a resistance of 10 Ω and takes 25 mA to produce full scale deflection.			
	How would instrument be used as a voltmeter in the range (0-120)V and ammeter in the range	6		
	(0 - 20)A.			
c.	Explain in brief, the need for turn compensation in instrument transformer.	6		
6 a.	Explain the construction and theory of current transformer. Also, write the expression for ratio	10		
	and phase angle errors of the same.			
b.	A potential transformer, ratio 1000/100 volt has the following constant :			
	Primary resistance = 94.5 Ω , Secondary resistance = 0.86 Ω , Primary reactance = 66.2 Ω , Total			
	equivalent reactance =110 Ω , No load current = 0.02 A at 0.4 power factor. Calculate;	6		
	(i) Phase angle error at no load			
	(ii) Burden in VA at unity power factor at which the phase angle will be zero.			
c.	Mention the advantages of instrument transformers.	4		
UNIT - IV				
7 a.	With a neat sketch, explain the true RMS responding voltmeter.	6		
b.	With the help of block diagram, explain the working of an electronic energy meter.	8		
c.	Write an explanatory notes on digital multi meter and voltmeter.	6		
8 a.	Explain in brief, the classification and selection procedure of the Transducers.	8		
b.	What is strain gauge? Obtain an expression for gauge factor in terms of Poisson's ratio.	6		
c.	Explain the working principle of LVDT used in displacement measurement.	6		
UNIT - V				
9 a.	With the neat block diagram, explain the working of dual trace oscilloscope.	10		
b.	With a neat sketch, explain the working of a X-Y recorder.	10		
10 a.	With a neat block diagram, explain the working of digital storage oscilloscope.	10		
b.	Write short notes on: i) Lissajous pattern ii) LCD and LED display	10		